 Hipparchus

/hi pahr"keuhs/, n.1. died 514 B.C., tyrant of Athens 527514.2. c190c125 B.C., Greek astronomer.
* * *
or Hipparchosborn , Nicaea, Bithyniadied after 127 BC, Rhodes?Greek astronomer and mathematician.He discovered the precession of the equinoxes (see equinoxes, precession of the), calculated the length of the year to within 6.5 minutes, compiled the first known star catalog, and made an early formulation of trigonometry. His observations were painstaking and extremely accurate. He rejected all astrology but also Suncentred views of the universe; his views had a profound influence on Ptolemy. His star catalog logged the positions of the stars in terms of celestial coordinates, listed about 850 stars, and specified their brightnesses by a system of six magnitudes similar to today's. He adequately accounted for the irregularities in the Moon's motion that are due to its elliptical orbit. His main contribution to geography was to apply rigorous mathematical principles to the determination of places on Earth's surface, and he was the first to do so by specifying latitude and longitude.* * *
▪ Greek astronomerIntroductionalso spelled Hipparchosborn , Nicaea, Bithynia [now Iznik, Turkey]died after 127 BC , Rhodes?Greek astronomer and mathematician who made fundamental contributions to the advancement of astronomy as a mathematical science and to the foundations of trigonometry. Although he is commonly ranked among the greatest scientists of antiquity, very little is known about his life, and only one of his many writings is still in existence. Knowledge of the rest of his work relies on secondhand reports, especially in the great astronomical compendium the Almagest, written by Ptolemy in the 2nd century AD.Lover of truthAs a young man in Bithynia, Hipparchus compiled records of local weather patterns throughout the year. Such weather calendars (parapēgmata), which synchronized the onset of winds, rains, and storms with the astronomical seasons and the risings and settings of the constellations, were produced by many Greek astronomers from at least as early as the 4th century BC.Most of Hipparchus's adult life, however, seems to have been spent carrying out a program of astronomical observation (astronomy) and research on the island of Rhodes. Ptolemy cites more than 20 observations made there by Hipparchus on specific dates from 147 to 127, as well as three earlier observations from 162 to 158 that may be attributed to him. These must have been only a tiny fraction of Hipparchus's recorded observations. In fact, his astronomical writings were numerous enough that he published an annotated list of them.Hipparchus also wrote critical commentaries on some of his predecessors and contemporaries. In Tōn Aratou kai Eudoxou Phainomenōn exēgēseōs biblia tria (“Commentary on the Phaenomena of Aratus and Eudoxus”), his only surviving book, he ruthlessly exposed errors in Phaenomena, a popular poem written by Aratus and based on a nowlost treatise of Eudoxus of Cnidus that named and described the constellations. Apparently his commentary Against the Geography of Eratosthenes was similarly unforgiving of loose and inconsistent reasoning. Ptolemy characterized him as a “lover of truth” (philalēthēs)—a trait that was more amiably manifested in Hipparchus's readiness to revise his own beliefs in the light of new evidence. He communicated with observers at Alexandria in Egypt, who provided him with some times of equinoxes (equinox), and probably also with astronomers at Babylon.Solar and lunar theoryHipparchus's most important astronomical work concerned the orbits of the Sun and Moon, a determination of their sizes and distances from the Earth, and the study of eclipses. Like most of his predecessors— Aristarchus Of Samos was an exception—Hipparchus assumed a spherical, stationary Earth at the centre of the universe (the geocentric cosmology (geocentric system)). From this perspective, the Sun, Moon, Mercury, Venus, Mars, Jupiter, and Saturn (all of the solar system bodies visible to the naked eye), as well as the stars (whose realm was known as the celestial sphere), revolved around the Earth each day.Every year the Sun traces out a circular path in a westtoeast direction relative to the stars (this is in addition to the apparent daily easttowest rotation of the celestial sphere around the Earth). Hipparchus had good reasons for believing that the Sun's path, known as the ecliptic, is a great circle, i.e., that the plane of the ecliptic passes through the Earth's centre. The two points at which the ecliptic and the equatorial plane intersect, known as the vernal and autumnal equinoxes (equinox), and the two points of the ecliptic farthest north and south from the equatorial plane, known as the summer and winter solstices (solstice), divide the ecliptic into four equal parts. However, the Sun's passage through each section of the ecliptic, or season, is not symmetrical. Hipparchus attempted to explain how the Sun could travel with uniform speed along a regular circular path and yet produce seasons of unequal length.Hipparchus knew of two possible explanations for the Sun's apparent motion, the eccenter and the epicyclic models (see Ptolemaic system). These models, which assumed that the apparent irregular motion was produced by compounding two or more uniform circular motions, were probably familiar to Greek astronomers well before Hipparchus. His contribution was to discover a method of using the observed dates of two equinoxes and a solstice to calculate the size and direction of the displacement of the Sun's orbit. With Hipparchus's mathematical model one could calculate not only the Sun's orbital location on any date, but also its position as seen from the Earth. The history of celestial mechanics until Johannes Kepler (Kepler, Johannes) (1571–1630) was mostly an elaboration of Hipparchus's model.Hipparchus also tried to measure as precisely as possible the length of the tropical year—the period for the Sun to complete one passage through the ecliptic. He made observations of consecutive equinoxes and solstices, but the results were inconclusive: he could not distinguish between possible observational errors and variations in the tropical year. However, by comparing his own observations of solstices with observations made in the 5th and 3rd centuries BC, Hipparchus succeeded in obtaining an estimate of the tropical year that was only 6 minutes too long.He was then in a position to calculate equinox and solstice dates for any year. Applying this information to recorded observations from about 150 years before his time, Hipparchus made the unexpected discovery that certain stars (star) near the ecliptic had moved about 2° relative to the equinoxes. He contemplated various explanations—for example, that these stars were actually very slowly moving planets (planet)—before he settled on the essentially correct theory that all the stars made a gradual eastward revolution relative to the equinoxes. Since Nicolaus Copernicus (Copernicus, Nicolaus) (1473–1543) established his heliocentric model of the universe, the stars have provided a fixed frame of reference, relative to which the plane of the equator slowly shifts—a phenomenon referred to as the precession of the equinoxes (equinoxes, precession of the). (See animation—>.)Hipparchus also analyzed the more complicated motion of the Moon in order to construct a theory of eclipses (eclipse). In addition to varying in apparent speed, the Moon diverges north and south of the ecliptic, and the periodicities of these phenomena are different. Hipparchus adopted values for the Moon's periodicities that were known to contemporary Babylonian astronomers, and he confirmed their accuracy by comparing recorded observations of lunar eclipses separated by intervals of several centuries. It remained, however, for Ptolemy (AD 127–145) to finish fashioning a fully predictive lunar model.In On Sizes and Distances (now lost), Hipparchus reportedly measured the Moon's orbit in relation to the size of the Earth. He had two methods of doing this. One method used an observation of a solar eclipse that had been total near the Hellespont (now called the Dardanelles) but only partial at Alexandria. Hipparchus assumed that the difference could be attributed entirely to the Moon's observable parallax against the stars, which amounts to supposing that the Sun, like the stars, is indefinitely far away. (Parallax is the apparent displacement of an object when viewed from different vantage points). Hipparchus thus calculated that the mean distance of the Moon from the Earth is 77 times the Earth's radius. In the second method he hypothesized that the distance from the centre of the Earth to the Sun is 490 times the Earth's radius—perhaps chosen because that is the shortest distance consistent with a parallax that is too small for detection by the unaided eye. Using the visually identical sizes of the solar and lunar discs, and observations of the Earth's shadow during lunar eclipses, Hipparchus found a relationship between the lunar and solar distances that enabled him to calculate that the Moon's mean distance from the Earth is approximately 63 times the Earth's radius. (The true value is about 60 times.)Other scientific workThe eccenter and epicyclic models sufficed to describe the motion of a body that has a single periodic variation in apparent speed, which so far as Hipparchus knew was the case with the Sun and Moon. According to Ptolemy, Hipparchus was aware that the movements of the planets were too complex to be accounted for by the same simple models, but he did not attempt to devise a satisfactory planetary theory.According to Pliny the Elder (AD 23–79), Hipparchus created a star catalog that assigned names to each star along with his measurements of their positions. However, the direct evidence for this catalog is very poor and does not reveal either the number of stars that it contained or how the positions were expressed—whether in terms of a coordinate system or by location within various constellations. In the Almagest Ptolemy presents a catalog of 1,022 stars grouped by constellations, with apparent magnitudes (magnitude) (measure of brightness) and coordinates in degrees measured along the ecliptic and perpendicular to it. Although Ptolemy stated that his catalog was based on personal observations, some historians argue that it was derived in large part from Hipparchus's catalog, with a simple adjustment for the intervening precessional motion. This remains one of the most controversial topics in the study of ancient astronomy.Hipparchus lived just before the rise of GrecoRoman astrology (astrology), but he surely knew about the Near Eastern traditions of astral divination that were already spreading in the classical world. In later astrological texts he is occasionally cited as an authority, most credibly as a source for astrological correspondences between constellations and geographical regions.Hipparchus's principal interest in geography, as quoted from Against the Geography of Eratosthenes by the Greek geographer Strabo (c. 64 BC–AD 23), was the accurate determination of terrestrial locations. Ancient authors preserved only a few tantalizing allusions to Hipparchus's other scientific work. For instance, On Bodies Carried Down by Their Weight speculated on the principles of weight and motion, and a work on optics adhered to Euclid's theory from the Optics that vision is produced by an emanation of rays from the eyes. Hipparchus's calculation of the exact number (103,049) of possible logical statements constructible from 10 basic assertions according to certain rules of Stoic logic is a rare surviving instance of Greek interest in combinatoric mathematics (combinatorics). Hipparchus's most significant contribution to mathematics may have been to develop—if not actually invent—a trigonometry based on a table (trigonometry table) of the lengths of chords in a circle of unit radius tabulated as a function of the angle subtended at the centre. Such a table would, for the first time, allow a systematic solution of general trigonometric problems, and clearly Hipparchus used it extensively for his astronomical calculations. Like so much of Hipparchus's work, his chord table has not survived.Alexander Raymond JonesAdditional ReadingThe fullest and most accurate survey of Hipparchus's life and work is G.J. Toomer, “Hipparchus,” in Dictionary of Scientific Biography, vol. 15 (1978), pp. 207–224. The principal source and the best translation for his astronomy is Ptolemy, Ptolemy's Almagest, trans. and annotated by G.J. Toomer (1984, reissued 1998). Hipparchus's commentary on Phaenomena has never been translated into English, but a German translation accompanies the Greek text in Carolus Manitius (Karl Manitius) (ed.), Hipparchou Tōn Aratou kai Eudoxou Phainomenōn exēgēseōs biblia tria (1894). Aspects of Hipparchus's astronomy are discussed in G.J. Toomer, “Hipparchus and Babylonian Astronomy,” in Erle Leichty, Maria deJ. Ellis, and Pamela Gerardi (eds.), A Scientific Humanist: Studies in Memory of Abraham Sachs (1988), pp. 353–362; and Gerd Grasshoff, The History of Ptolemy's Star Catalogue (1990). For the remains of the geographical work, see D.R. Dicks (ed.), The Geographical Fragments of Hipparchus (1960); for the work on falling bodies, Michael Wolff, “Philoponus and the Rise of Preclassical Dynamics,” in Richard Sorabji (ed.), Philoponus and the Rejection of Aristotelian Science (1987), pp. 84–120; and for his combinatorics, R.P. Stanley, “Hipparchus, Plutarch, Schröder and Hough,” The American Mathematical Monthly, 104(4):344–350 (April 1997).Alexander Raymond Jones* * *
Universalium. 2010.
Look at other dictionaries:
Hipparchus — (Greek polytonicἽππαρχος; ca. 190 BC ndash; ca. 120 BC) was a Greek astronomer, geographer, and mathematician of the Hellenistic period.Hipparchus was born in Nicaea (now Iznik, Turkey), and probably died on the island of Rhodes. He is known to… … Wikipedia
Hipparchus — puede hacer referencia a: Hipparchus, astrónomo griego también conocido como Hiparco de Nicea. Hipparchus, cráter del planeta Marte. Hipparchus, cráter de La Luna. Esta página de desambiguación cataloga artículos relacionados con el mismo título … Wikipedia Español
Hippárchus — Hippárchus, Sohn des Pisistratus, mit seinem Bruder Hippias (s.d.) Herrscher von Athen, 514 v. Chr. am Fest der Panathenäen aus Privatrache von Harmodius und Aristogiton ermordet … Kleines KonversationsLexikon
Hippárchus [2] — Hippárchus, aus Nicäa, Gründer der wissenschaftlichen Astronomie, lebte um 160 125 v. Chr. in Alexandria, bestimmte zuerst die Jahreslänge sowie die Entfernungen und Größe von Sonne und Mond genauer, berechnete die ersten Sonnen und Mondtafeln,… … Kleines KonversationsLexikon
Hipparchus [1] — Hipparchus, Sohn des Pisistratus, mit seinem Bruder Hippias Beherrscher Athens, wurde 514 v. Chr. ermordet, s. Athen Bd. I. S. 307 u. Harmodius … Herders ConversationsLexikon
Hipparchus [2] — Hipparchus, alexandrin. Astronom, einer der verdientesten des Alterthums, geb. zu Nicäa in Bithynien, lebte um 160–125 v. Chr. Von ihm sind die ersten Sonnen u. Mondtafeln, die erste zusammenhängende Theorie über die Mondbewegung; auch die… … Herders ConversationsLexikon
Hipparchus — [hi pär′kəs] 2d cent. B.C.; Gr. astronomer … English World dictionary
Hipparchus, S. — S. Hipparchus et 6 Soc. MM. (9. Dec.) Vom Griech. ο τππος = das Pferd, und ἂρχειν = herrschen; also Bferdebeherrscher, oder besser Oberst (ἀρχός) der Reiterei (cἱππος etc. – Der hl. Martyrer Hipparchus und sein Freund Philotheus lebten zur Zeit… … Vollständiges HeiligenLexikon
Hipparchus — (c. 170 bc–c. 120 bc) Greek astronomer and geographer Born at Nicaea, which is now in Turkey, Hipparchus (hi par kus) worked in Rhodes, where he built an observatory, and in Alexandria. None of his works has survived but many of them were… … Scientists
HIPPARCHUS — I. HIPPARCHUS Dux Atheniensium, coniurans contra Heraclidem Demetrii praesidem, Athenas frenantem; occisus ab eodem detectâ per Hieroclem coniuratione. Polyaen. l. 5. II. HIPPARCHUS Nicaeus Astrologus, scripsit de Arati Phaenomenis, de stellis… … Hofmann J. Lexicon universale