marine ecosystem

marine ecosystem

Introduction

      complex of living organisms in the ocean environment.

      Marine waters cover two-thirds of the surface of the Earth. In some places the ocean is deeper than Mount Everest is high; for example, the Mariana Trench and the Tonga Trench in the western part of the Pacific Ocean reach depths in excess of 10,000 metres (32,800 feet). Within this ocean habitat live a wide variety of organisms that have evolved in response to various features of their environs.

Origins of marine life
      The Earth formed approximately 4.6 billion years ago. As it cooled, water in the atmosphere condensed and the Earth was pummeled with torrential rains, which filled its great basins, forming seas. The primeval atmosphere and waters (water) harboured the inorganic components hydrogen, methane, ammonia, and water. These substances are thought to have combined to form the first organic compounds when sparked by electrical discharges of lightning. Some of the earliest known organisms are cyanobacteria (formerly referred to as blue-green algae). Evidence of these early photosynthetic prokaryotes has been found in Australia in Precambrian marine sediments called stromatolites (stromatolite) that are approximately 3 billion years old (see community ecology: Evolution of the biosphere: Geologic history and early life-forms: Conditions prior to the emergence of life (community ecology)). Although the diversity (biodiversity) of life-forms observed in modern oceans did not appear until much later, during the Precambrian (3.8 billion to 540 million years ago) many kinds of bacteria, algae, protozoa, and primitive metazoa evolved to exploit the early marine habitats of the world. During the Cambrian Period (540 to 505 million years ago) a major radiation of life occurred in the oceans. Fossils (fossil) of familiar organisms such as cnidaria (e.g., jellyfish), echinoderms (e.g., feather stars), precursors of the fishes (fish) (e.g., the protochordate Pikaia from the Burgess Shale of Canada), and other vertebrates are found in marine sediments of this age. The first fossil fishes are found in sediments from the Ordovician Period (505 to 438 million years ago). Changes in the physical conditions of the ocean that are thought to have occurred in the Precambrian—an increase in the concentration of oxygen in seawater and a build-up of the ozone layer that reduced dangerous ultraviolet radiation—may have facilitated the increase and dispersal of living things.

The marine environment

Geography, oceanography, and topography
      The shape of the oceans and seas of the world has changed significantly throughout the past 600 million years. According to the theory of plate tectonics, the crust of the Earth is made up of many dynamic plates (see plate tectonics; and earth: The surface of the Earth as a mosaic of plates (geoid)). There are two types of plates—oceanic and continental—which float on the surface of the Earth's mantle, diverging, converging, or sliding against one another. When two plates diverge, magma from the mantle wells up and cools, forming new crust; when convergence occurs, one plate descends—i.e., is subducted—below the other and crust is resorbed into the mantle. Examples of both processes are observed in the marine environment. Oceanic crust is created along oceanic ridges or rift areas, which are vast undersea mountain ranges such as the Mid-Atlantic Ridge. Excess crust is reabsorbed along subduction zones (subduction zone), which usually are marked by deep-sea trenches such as the Kuril Trench off the coast of Japan.

      The shape of the ocean also is altered as sea levels (sea level) change. During ice ages a higher proportion of the waters of the Earth is bound in the polar ice caps, resulting in a relatively low sea level. When the polar ice caps melt during interglacial periods, the sea level rises. These changes in sea level cause great changes in the distribution of marine environments such as coral reefs. For example, during the last Pleistocene Ice Age the Great Barrier Reef did not exist as it does today; the continental shelf on which the reef now is found was above the high-tide mark.

 Marine organisms are not distributed evenly throughout the oceans. Variations in characteristics of the marine environment create different habitats and influence what types of organisms will inhabit them. The availability of light (sunlight), water depth, proximity to land, and topographic complexity all affect marine habitats. The availability of light affects which organisms can inhabit a certain area of a marine ecosystem. The greater the depth of the water, the less light can penetrate until below a certain depth there is no light whatsoever. This area of inky darkness, which occupies the great bulk of the ocean, is called the aphotic zone (Figure 1—>). The illuminated region above it is called the photic zone, within which are distinguished the euphotic and disphotic zones. The euphotic zone is the layer closer to the surface that receives enough light for photosynthesis to occur. Beneath lies the disphotic zone, which is illuminated but so poorly that rates of respiration exceed those of photosynthesis. The actual depth of these zones depends on local conditions of cloud cover, water turbidity, and ocean surface. In general, the euphotic zone can extend to depths of 80 to 100 metres and the disphotic zone to depths of 80 to 700 metres. Marine organisms are particularly abundant in the photic zone, especially the euphotic portion; however, many organisms inhabit the aphotic zone and migrate vertically to the photic zone every night. Other organisms, such as the tripod fish and some species of sea cucumbers and brittle stars, remain in darkness all their lives.

  Marine environments can be characterized broadly as a water, or pelagic, environment (pelagic zone) and a bottom, or benthic, environment (Figure 1—>). Within the pelagic environment the waters are divided into the neritic (neritic zone) province, which includes the water above the continental shelf, and the oceanic province, which includes all the open waters beyond the continental shelf. The high nutrient levels of the neritic province—resulting from dissolved materials in riverine runoff—distinguish this province from the oceanic. The upper portion of both the neritic and oceanic waters—the epipelagic zone—is where photosynthesis occurs; it is roughly equivalent to the photic zone. Below this zone lie the mesopelagic, ranging between 200 and 1,000 metres, the bathypelagic, from 1,000 to 4,000 metres, and the abyssalpelagic, which encompasses the deepest parts of the oceans from 4,000 metres to the recesses of the deep-sea trenches. The benthic environment also is divided into different zones (Figure 1—>). The supralittoral is above the high-tide mark and is usually not under water. The intertidal, or littoral, zone (littoral zone) ranges from the high-tide mark (the maximum elevation of the tide) to the shallow, offshore waters. The sublittoral is the environment beyond the low-tide mark and is often used to refer to substrata of the continental shelf, which reaches depths of between 150 and 300 metres. Sediments of the continental shelf that influence marine organisms generally originate from the land, particularly in the form of riverine runoff, and include clay, silt, and sand. Beyond the continental shelf is the bathyal zone, which occurs at depths of 150 to 4,000 metres and includes the descending continental slope and rise. The abyssal zone (between 4,000 and 6,000 metres) represents a substantial portion of the oceans. The deepest region of the oceans (greater than 6,000 metres) is the hadal zone of the deep-sea trenches. Sediments of the deep sea primarily originate from a rain of dead marine organisms and their wastes.

Physical and chemical properties of seawater
 The physical and chemical properties of seawater vary according to latitude, depth, nearness to land, and input of fresh water. Approximately 3.5 percent of seawater is composed of dissolved compounds, while the other 96.5 percent is pure water. The chemical composition of seawater reflects such processes as erosion of rock and sediments, volcanic activity, gas exchange with the atmosphere, the metabolic and breakdown products of organisms, and rain. (For a list of the principal constituents of seawater see ocean: Composition of seawater (ocean).) In addition to carbon, the nutrients essential for living organisms include nitrogen and phosphorus, which are minor constituents of seawater and thus are often limiting factors in organic cycles of the ocean. Concentrations of phosphorus and nitrogen are generally low in the photic zone because they are rapidly taken up by marine organisms. The highest concentrations of these nutrients generally are found below 500 metres, a result of the decay of organisms. Other important elements include silicon (used in the skeletons of radiolarians and diatoms; see Figure 2—>) and calcium (essential in the skeletons of many organisms such as fish and corals).

      The chemical composition of the atmosphere also affects that of the ocean. For example, carbon dioxide is absorbed by the ocean and oxygen is released to the atmosphere through the activities of marine plants. The dumping of pollutants into the sea also can affect the chemical makeup of the ocean, contrary to earlier assumptions that, for example, toxins could be safely disposed of there.

      The physical and chemical properties of seawater have a great effect on organisms, varying especially with the size of the creature. As an example, seawater is viscous (viscosity) to very small animals (less than 1 millimetre [0.039 inch] long) such as ciliates but not to large marine creatures such as tuna.

      Marine organisms have evolved a wide variety of unique physiological and morphological features that allow them to live in the sea. Notothenid fishes in Antarctica are able to inhabit waters as cold as −2° C (28° F) because of proteins in their blood that act as antifreeze. Many organisms are able to achieve neutral buoyancy by secreting gas into internal chambers, as cephalopods do, or into swim bladders, as some fish do; other organisms use lipids, which are less dense than water, to achieve this effect. Some animals, especially those in the aphotic zone, generate light to attract prey. Animals in the disphotic zone such as hatchetfish produce light by means of organs called photophores (photophore) to break up the silhouette of their bodies and avoid visual detection by predators. Many marine animals can detect vibrations or sound in the water over great distances by means of specialized organs. Certain fishes have lateral-line systems, which they use to detect prey, and whales have a sound-producing organ called a melon with which they communicate. Tolerance to differences in salinity varies greatly: stenohaline organisms have a low tolerance to salinity changes, whereas euryhaline organisms, which are found in areas where river and sea meet (estuaries), are very tolerant of large changes in salinity. Euryhaline organisms are also very tolerant of changes in temperature. Animals that migrate between fresh water and salt water, such as salmon or eels, are capable of controlling their osmotic environment by active pumping or the retention of salts (see biosphere: The organism and the environment: Environmental conditions: Salinity (biosphere)). Body architecture varies greatly in marine waters. The body shape of the cnidarian by-the-wind-sailor (Velella (purple sail) velella)—an animal that lives on the surface of the water (pleuston) and sails with the assistance of a modified flotation chamber—contrasts sharply with the sleek, elongated shape of the barracuda.

Ocean currents (ocean current)
      The movements of ocean waters are influenced by numerous factors, including the rotation of the Earth (which is responsible for the Coriolis effect), atmospheric circulation patterns that influence surface waters, and temperature and salinity gradients between the tropics and the polar regions (thermohaline circulation). For a detailed discussion of ocean circulation see ocean: Circulation of the ocean waters (ocean). The resultant patterns of circulation range from those that cover great areas, such as the North Subtropical Gyre, which follows a path thousands of kilometres long, to small-scale turbulences of less than one metre.

      Marine organisms of all sizes are influenced by these patterns, which can determine the range of a species. For example, krill (Euphausia superba) are restricted to the Antarctic Circumpolar Current. Distribution patterns of both large and small pelagic organisms are affected as well. Mainstream currents such as the Gulf Stream and East Australian Current transport larvae great distances. As a result cold temperate coral reefs receive a tropical infusion when fish and invertebrate larvae from the tropics are relocated to high latitudes by these currents. The successful recruitment of eels to Europe depends on the strength of the Gulf Stream to transport them from spawning sites in the Caribbean. Areas where the ocean is affected by nearshore features, such as estuaries, or areas in which there is a vertical salinity gradient (halocline) often exhibit intense biological activity. In these environments, small organisms can become concentrated, providing a rich supply of food for other animals.

Marine biota
      Marine biota can be classified broadly into those organisms living in either the pelagic environment (pelagic zone) (plankton and nekton) or the benthic environment (benthos). Some organisms, however, are benthic in one stage of life and pelagic in another. Producers that synthesize organic molecules exist in both environments. Single-celled or multicelled plankton with photosynthetic (photosynthesis) pigments are the producers of the photic zone in the pelagic environment. Typical benthic producers are microalgae (e.g., diatoms), macroalgae (e.g., the kelp Macrocystis pyrifera), or sea grass (e.g., Zostera).

  Plankton are the numerous, primarily microscopic inhabitants of the pelagic environment (Figure 3—>). They are critical components of food chains in all marine environments (Figure 1—> in the article community ecology ) because they provide nutrition for the nekton (e.g., crustaceans, fish, and squid) and benthos (e.g., sea squirts and sponges). They also exert a global effect on the biosphere because the balance of components of the Earth's atmosphere depends to a great extent on the photosynthetic activities of some plankton.

      The term “plankton” is derived from the Greek planktos, meaning wandering or drifting, an apt description of the way most plankton spend their existence, floating with the ocean's currents. Not all plankton, however, are unable to control their movements, and many forms depend on self-directed motions for their survival.

      Plankton range in size from tiny microbes (1 micrometre [0.000039 inch] or less) to jellyfish whose gelatinous bell can reach up to 2 metres in width and whose tentacles can extend over 15 metres. However, most planktonic organisms, called plankters, are less than 1 millimetre (0.039 inch) long. These microbes thrive on nutrients in seawater and are often photosynthetic. The plankton include a wide variety of organisms such as algae, bacteria, protozoans, the larvae of some animals, and crustaceans. A large proportion of the plankton are protists (protist)—i.e., eukaryotic, predominantly single-celled organisms. Plankton can be broadly divided into phytoplankton, which are plants or plantlike protists; zooplankton, which are animals or animal-like protists; and microbes such as bacteria. Phytoplankton carry out photosynthesis and are the producers of the marine community; zooplankton are the heterotrophic consumers.

  Diatoms (diatom) and dinoflagellates (dinoflagellate) (approximate range between 15 and 1,000 micrometres in length) are two highly diverse groups of photosynthetic protists that are important components of the plankton (Figure 3—>). Diatoms are the most abundant phytoplankton. While many dinoflagellates carry out photosynthesis, some also consume bacteria or algae. Other important groups of protists include flagellates (flagellate), foraminiferans (foraminiferan), radiolarians (radiolarian), acantharians, and ciliates (ciliate) (Figure 3—>). Many of these protists are important consumers and a food source for zooplankton.

      Zooplankton, which are greater than 0.05 millimetre in size, are divided into two general categories: meroplankton, which spend only a part of their life cycle—usually the larval (larva) or juvenile stage—as plankton, and holoplankton, which exist as plankton all their lives. Many larval meroplankton in coastal, oceanic, and even freshwater environments (including sea urchins, intertidal snails, and crabs, lobsters, and fish) bear little or no resemblance to their adult forms. These larvae may exhibit features unique to the larval stage, such as the spectacular spiny armour on the larvae of certain crustaceans (e.g., Squilla), probably used to ward off predators.

 Important holoplanktonic animals include such lobsterlike crustaceans as the copepods (copepod), cladocerans (water flea), and euphausids ( krill), which are important components of the marine environment because they serve as food sources for fish and marine mammals (Figure 1—> of the community ecology article ). Gelatinous forms such as larvaceans, salps, and siphonophores graze on phytoplankton or other zooplankton. Some omnivorous zooplankton such as euphausids and some copepods consume both phytoplankton and zooplankton; their feeding behaviour changes according to the availability and type of prey. The grazing and predatory activity of some zooplankton can be so intense that measurable reductions in phytoplankton or zooplankton abundance (or biomass) occur. For example, when jellyfish occur in high concentration in enclosed seas, they may consume such large numbers of fish larvae as to greatly reduce fish populations.

      The jellylike plankton are numerous and predatory. They secure their prey with stinging cells (nematocysts) or sticky cells (colloblasts of comb jellies). Large numbers of the Portuguese man-of-war (Physalia), with its conspicuous gas bladder, the by-the-wind-sailor (Velella (purple sail) velella), and the small blue disk-shaped Porpita porpita are propelled along the surface by the wind, and after strong onshore winds they may be found strewn on the beach. Beneath the surface, comb jellies often abound, as do siphonophores, salps, and scyphomedusae.

      The pelagic environment was once thought to present few distinct habitats, in contrast to the array of niches within the benthic environment. Because of its apparent uniformity, the pelagic realm was understood to be distinguished simply by plankton of different sizes. Small-scale variations in the pelagic environment, however, have been discovered that affect biotic distributions. Living and dead matter form organic aggregates called marine snow to which members of the plankton community may adhere, producing patchiness in biotic distributions. Marine snow includes structures such as aggregates of cells and mucus as well as drifting macroalgae and other flotsam that range in size from 0.5 millimetre to 1 centimetre (although these aggregates can be as small as 0.05 millimetre and as large as 100 centimetres). Many types of microbes, phytoplankton, and zooplankton stick to marine snow, and some grazing copepods and predators will feed from the surface of these structures. Marine snow is extremely abundant at times, particularly after plankton blooms. Significant quantities of organic material from upper layers of the ocean may sink to the ocean floor as marine snow, providing an important source of food for bottom dwellers. Other structures that plankton respond to in the marine environment include aggregates of phytoplankton cells that form large rafts in tropical and temperate waters of the world (e.g., cells of Oscillatoria [Trichodesmium] erthraeus) and various types of seaweed (e.g., Sargassum, Phyllospora, Macrocystis) that detach from the sea floor and drift.

 Nekton are the active swimmers of the oceans and are often the best-known organisms of marine waters. Nekton are the top predators in most marine food chains (Figure 1—> of the community ecology article ). The distinction between nekton and plankton is not always sharp. As mentioned above, many large marine animals, such as marlin and tuna, spend the larval stage of their lives as plankton and their adult stage as large and active members of the nekton. Other organisms such as krill are referred to as both micronekton and macrozooplankton.

      The vast majority of nekton are vertebrates (e.g., fishes (fish), reptiles, and mammals), mollusks, and crustaceans. The most numerous group of nekton are the fishes, with approximately 16,000 species. Nekton are found at all depths and latitudes of marine waters. Whales, penguins, seals, and icefish abound in polar waters. Lantern fish (family Myctophidae) are common in the aphotic zone along with gulpers (Saccopharynx), whalefish (family Cetomimidae), seven-gilled sharks, and others. Nekton diversity is greatest in tropical waters, where in particular there are large numbers of fish species.

      The largest animals on the Earth, the blue whales (blue whale) (Balaenoptera musculus), which grow to 25 to 30 metres long, are members of the nekton. These huge mammals and other baleen whales (order Mysticeti), which are distinguished by fine filtering plates in their mouths, feed on plankton and micronekton as do whale sharks (whale shark) (Rhinocodon typus), the largest fish in the world (usually 12 to 14 metres long, with some reaching 17 metres). The largest carnivores that consume large prey include the toothed whales (toothed whale) (order Odontoceti—for example, the killer whales, Orcinus orca), great white sharks (Carcharodon carcharias), tiger sharks (Galeocerdo cuvieri), black marlin (Makaira indica), bluefin tuna (Thunnus thynnus), and giant groupers (Epinephelus lanceolatus).

      Nekton form the basis of important fisheries (fishery) around the world. Vast schools of small anchovies, herring, and sardines generally account for one-quarter to one-third of the annual harvest from the ocean. Squid are also economically valuable nekton. Halibut, sole, and cod are demersal (i.e., bottom-dwelling) fish that are commercially important as food for humans. They are generally caught in continental shelf waters. Because pelagic nekton often abound in areas of upwelling where the waters are nutrient-rich, these regions also are major fishing areas (see below Biological productivity: Upwelling (marine ecosystem)).

      Organisms are abundant in surface sediments of the continental shelf and in deeper waters, with a great diversity found in or on sediments. In shallow waters, beds of seagrass provide a rich habitat for polychaete worms, crustaceans (e.g., amphipods), and fishes. On the surface of and within intertidal sediments most animal activities are influenced strongly by the state of the tide. On many sediments in the photic zone, however, the only photosynthetic organisms are microscopic benthic diatoms.

      Benthic organisms can be classified according to size. The macrobenthos are those organisms larger than 1 millimetre. Those that eat organic material in sediments are called deposit feeders (e.g., holothurians, echinoids, gastropods), those that feed on the plankton above are the suspension feeders (e.g., bivalves, ophiuroids, crinoids), and those that consume other fauna in the benthic assemblage are predators (predation) (e.g., starfish, gastropods). Organisms between 0.1 and 1 millimetre constitute the meiobenthos. These larger microbes, which include foraminiferans, turbellarians, and polychaetes, frequently dominate benthic food chains, filling the roles of nutrient recycler, decomposer, primary producer, and predator. The microbenthos are those organisms smaller than 1 millimetre; they include diatoms, bacteria, and ciliates.

      Organic matter is decomposed aerobically by bacteria near the surface of the sediment where oxygen is abundant. The consumption of oxygen at this level, however, deprives deeper layers of oxygen, and marine sediments below the surface layer are anaerobic. The thickness of the oxygenated layer varies according to grain size, which determines how permeable the sediment is to oxygen and the amount of organic matter it contains. As oxygen concentration diminishes, anaerobic processes come to dominate. The transition layer between oxygen-rich and oxygen-poor layers is called the redox discontinuity layer and appears as a gray layer above the black anaerobic layers. Organisms have evolved various ways of coping with the lack of oxygen. Some anaerobes release hydrogen sulfide, ammonia, and other toxic reduced ions through metabolic processes. The thiobiota, made up primarily of microorganisms, metabolize sulfur. Most organisms that live below the redox layer, however, have to create an aerobic environment for themselves. burrowing animals generate a respiratory current along their burrow systems to oxygenate their dwelling places; the influx of oxygen must be constantly maintained because the surrounding anoxic layer quickly depletes the burrow of oxygen. Many bivalves (e.g., Mya arenaria) extend long siphons upward into oxygenated waters near the surface so that they can respire and feed while remaining sheltered from predation deep in the sediment. Many large mollusks use a muscular “foot” to dig with, and in some cases they use it to propel themselves away from predators such as starfish. The consequent “irrigation” of burrow systems can create oxygen and nutrient fluxes that stimulate the production of benthic producers (e.g., diatoms).

      Not all benthic organisms live within the sediment; certain benthic assemblages live on a rocky substrate. Various phyla of algae—Rhodophyta (red), Chlorophyta (green), and Phaeophyta (brown)—are abundant and diverse in the photic zone on rocky substrata and are important producers. In intertidal regions algae are most abundant and largest near the low-tide mark. Ephemeral algae such as Ulva, Enteromorpha, and coralline algae cover a broad range of the intertidal. The mix of algae species found in any particular locale is dependent on latitude and also varies greatly according to wave exposure and the activity of grazers. For example, Ascophyllum spores cannot attach to rock in even a gentle ocean surge; as a result this plant is largely restricted to sheltered shores. The fastest-growing plant—adding as much as 1 metre per day to its length—is the giant kelp, Macrocystis pyrifera, which is found on subtidal rocky reefs. These plants, which may exceed 30 metres in length, characterize benthic habitats on many temperate reefs. Large laminarian and fucoid algae are also common on temperate rocky reefs, along with the encrusting (e.g., Lithothamnion) or short tufting forms (e.g., Pterocladia). Many algae on rocky reefs are harvested for food, fertilizer, and pharmaceuticals. Macroalgae are relatively rare on tropical reefs where corals abound, but Sargassum and a diverse assemblage of short filamentous and tufting algae are found, especially at the reef crest. Sessile and slow-moving invertebrates are common on reefs. In the intertidal and subtidal regions herbivorous gastropods and urchins abound and can have a great influence on the distribution of algae. Barnacles are common sessile animals in the intertidal. In the subtidal regions, sponges, ascidians, urchins, and anemones are particularly common where light levels drop and current speeds are high. Sessile assemblages of animals are often rich and diverse in caves and under boulders.

      Reef-building coral polyps (Scleractinia) are organisms of the phylum Cnidaria that create a calcareous substrate upon which a diverse array of organisms live. Approximately 700 species of corals are found in the Pacific and Indian oceans and belong to genera such as Porites, Acropora, and Montipora. Some of the world's most complex ecosystems are found on coral reefs (coral reef). Zooxanthellae (zooxanthella) are the photosynthetic, single-celled algae that live symbiotically within the tissue of corals and help to build the solid calcium carbonate matrix of the reef. Reef-building corals are found only in waters warmer than 18° C; warm temperatures are necessary, along with high light intensity, for the coral-algae complex to secrete calcium carbonate. Many tropical islands are composed entirely of hundreds of metres of coral built atop volcanic rock.

Links between the pelagic environments and the benthos
      Considering the pelagic and benthic environments in isolation from each other should be done cautiously because the two are interlinked in many ways. For example, pelagic plankton are an important source of food for animals on soft or rocky bottoms. Suspension feeders such as anemones and barnacles filter living and dead particles from the surrounding water while detritus feeders graze on the accumulation of particulate material raining from the water column above. The molts of crustaceans, plankton feces, dead plankton, and marine snow all contribute to this rain of fallout from the pelagic environment to the ocean bottom. This fallout can be so intense in certain weather patterns—such as the El Niño condition—that benthic animals on soft bottoms are smothered and die. There also is variation in the rate of fallout of the plankton according to seasonal cycles of production. This variation can create seasonality in the abiotic zone where there is little or no variation in temperature or light. Plankton form marine sediments, and many types of fossilized protistan plankton, such as foraminiferans and coccoliths, are used to determine the age and origin of rocks.

Organisms of the deep-sea vents
      Producers were discovered in the aphotic zone when exploration of the deep sea by submarine became common in the 1970s. Deep-sea hydrothermal vents now are known to be relatively common in areas of tectonic activity (e.g., spreading ridges). The vents are a nonphotosynthetic source of organic carbon available to organisms. A diversity of deep-sea organisms including mussels, large bivalve clams, and vestimentiferan worms are supported by bacteria that oxidize sulfur (sulfide) and derive chemical energy from the reaction. These organisms are referred to as chemoautotrophic, or chemosynthetic, as opposed to photosynthetic, organisms. Many of the species in the vent fauna have developed symbiotic (symbiosis) relationships with chemoautotrophic bacteria, and as a consequence the megafauna are principally responsible for the primary production in the vent assemblage. The situation is analogous to that found on coral reefs where individual coral polyps have symbiotic relationships with zooxanthellae (see above). In addition to symbiotic bacteria there is a rich assemblage of free-living bacteria around vents. For example, Beggiatoas-like bacteria often form conspicuous weblike mats on any hard surface; these mats have been shown to have chemoautotrophic metabolism. Large numbers of brachyuran (e.g., Bythograea) and galatheid crabs, large sea anemones (e.g., Actinostola callasi), copepods, other plankton, and some fish—especially the eelpout Thermarces cerberus—are found in association with vents.

Patterns and processes influencing the structure of marine assemblages

Distribution and dispersal
      The distribution patterns of marine organisms are influenced by physical and biological processes in both ecological time (tens of years) and geologic time (hundreds to millions of years). The shapes of the Earth's oceans have been influenced by plate tectonics, and as a consequence the distributions of fossil and extant marine organisms also have been affected. Vicariance theory argues that plate tectonics has a major role in determining biogeographic patterns (biogeographic region) (see major biogeographic regions of the world: General features: The concept of biogeography: Dispersalist and vicariance biogeography (biogeographic region)). For example, Australia was once—90 million years ago—close to the South Pole and had few coral reefs. Since then Australia has been moving a few millimetres each year closer to the Equator. As a result of this movement and local oceanographic conditions, coral reef environments are extending ever so slowly southward. Dispersal may also have an important role in biogeographic patterns of abundance. The importance of dispersal varies greatly with local oceanographic features, such as the direction and intensity of currents and the biology of the organisms. Humans can also have an impact on patterns of distribution and the extinction of marine organisms. For example, fishing intensity in the Irish Sea was based on catch limits set for cod with no regard for the biology of other species. One consequence of this practice was that the local skate, which had a slow reproductive rate, was quickly fished to extinction.

 A characteristic of many marine organisms is a bipartite life cycle, which can affect the dispersal of an organism. Most animals found on soft and hard substrata, such as lobsters (lobster) (Figure 4—>), crabs, barnacles, fish, polychaete worms, and sea urchins, spend their larval (larva) phase in the plankton, and in this phase are dispersed most widely (see above Marine biota: Plankton (marine ecosystem)). The length of the larval phase, which can vary from a few minutes to hundreds of days, has a major influence on dispersal. For example, wrasses of the genus Thalassoma have a long larval life, compared with many other types of reef fish, and populations of these fish are well dispersed to the reefs of isolated volcanic islands around the Pacific. The bipartite life cycle of algae also affects their dispersal, which occurs through algal spores. Although in general, spores disperse only a short distance from adult plants, limited swimming abilities—Macrocystis spores have flagella—and storms can disperse spores over greater distances.

Migrations (migration) of marine organisms
      The migrations of plankton and nekton throughout the water column in many parts of the world are well described. Diurnal vertical migrations are common. For example, some types of plankton, fish, and squid remain beneath the photic zone during the day, moving toward the surface after dusk and returning to the depths before dawn. It is generally argued that marine organisms migrate in response to light levels. This behaviour may be advantageous because by spending the daylight (sunlight) hours in the dim light or darkness beneath the photic zone plankton can avoid predators that locate their prey visually. After the Sun has set, plankton can rise to the surface waters where food is more abundant and where they can feed safely under the cover of darkness.

      Larval forms can facilitate their horizontal transport along different currents (ocean current) by migrating vertically. This is possible because currents can differ in direction according to depth (e.g., above and below haloclines and thermoclines), as is the case in estuaries.

      In coastal waters many larger invertebrates (e.g., mysids, amphipods, and polychaete worms) leave the cover of algae and sediments to migrate into the water column at night. It is thought that these animals disperse to different habitats or find mates by swimming when visual predators find it hard to see them. In some cases only one sex will emerge at night, and often that sex is morphologically better suited for swimming.

      Horizontal migrations of fish that span distances of hundreds of metres to tens of kilometres are common and generally related to patterns of feeding (feeding behaviour) or reproduction. Tropical coral trout (Plectropomus species) remain dispersed over a reef for most of the year, but adults will aggregate at certain locations at the time of spawning. Transoceanic migrations (greater than 1,000 kilometres) are observed in a number of marine vertebrates, and these movements often relate to requirements of feeding and reproduction. Bluefin tuna (Thunnus thynnus) traverse the Atlantic Ocean in a single year; they spawn in the Caribbean, then swim to high latitudes of the Atlantic to feed on the rich supply of fish. Turtles and sharks also migrate great distances.

      Fish that spend their lives in both marine and freshwater systems (diadromous animals) exhibit some of the most spectacular migratory behaviour. Anadromous fishes (those that spend most of their lives in the sea but migrate to fresh water to spawn) such as Atlantic salmon (Salmo salar) also have unique migratory patterns. After spawning, the adults die. Newly hatched fish (alevin) emerge from spawned eggs and develop into young fry that move down rivers toward the sea. Juveniles (parr) grow into larger fish (smolt) that convene near the ocean. When the adult fish are ready to spawn, they return to the river in which they were born (natal river), using a variety of environmental cues, including the Earth's magnetic field, the Sun, and water chemistry. It is believed that the thyroid gland has a role in imprinting the water chemistry of the natal river on the fish. Freshwater eels such as the European eel (Anguilla anguilla) undertake great migrations from fresh water to spawn in the marine waters of the Sargasso Sea (catadromous migrations), where they die. Eel larvae, called leptocephalus larvae, drift back to Europe in the Gulf Stream.

Dynamics of populations and assemblages
      A wide variety of processes influence the dynamics of marine populations of individual species and the composition of assemblages (community) (e.g., collections of populations of different species that live in the same area). With the exception of marine mammals such as whales, fish that bear live young (e.g., embiotocid fish), and brooders (i.e., fauna that incubate their offspring until they emerge as larvae or juveniles), most marine organisms produce a large number of offspring of which few survive. Processes that affect the plankton can have a great influence on the numbers of young that survive to be recruited, or relocated, into adult populations. The survival of larvae may depend on the abundance of food at various times and in various places, the number of predators (predation), and oceanographic features that retain larvae near suitable nursery areas. The number of organisms recruited to benthic and pelagic systems may ultimately determine the size of adult populations and therefore the relative abundance of species in marine assemblages. However, many processes can affect the survival of organisms after recruitment. Predators eat recruits, and mortality rates in prey species can vary with time and space, thus changing original population patterns established in recruitment.

      Patterns of colonization and succession can have a significant impact on benthic assemblages. For example, when intertidal reefs are cleared experimentally, the assemblage of organisms that colonize the bare space often reflects the types of larvae available in local waters at the time. Tube worms (tube worm) may dominate if they establish themselves first; if they fail to do so, algal spores may colonize the shore first and inhibit the settlement of these worms. competition between organisms may also play a role. Long-term data gathered over periods of more than 25 years from coral reefs have demonstrated that some corals (e.g., Acropora cytherea) competitively overgrow neighbouring corals. Physical disturbance from hurricanes destroys many corals, and during regrowth competitively inferior species can coexist with normally dominant species on the reef. Chemical defenses of sessile organisms also can deter the growth or cause increased mortality of organisms that settle on them. Ascidian larvae (e.g., Podoclavella) often avoid settling on sponges (e.g., Mycale); when this does occur, the larvae rarely reach adulthood.

      Although the processes that determine species assemblages may be understood, variations occur in the composition of the plankton that make it difficult to predict patterns of colonization with great accuracy.

Biological productivity
      Primary productivity is the rate at which energy is converted by photosynthetic and chemosynthetic autotrophs to organic substances. The total amount of productivity in a region or system is gross primary productivity. A certain amount of organic material is used to sustain the life of producers; what remains is net productivity. Net marine primary productivity is the amount of organic material available to support the consumers (herbivores and carnivores) of the sea. The standing crop is the total biomass (weight) of vegetation. Most primary productivity is carried out by pelagic phytoplankton, not benthic plants.

      Most primary producers require nitrogen and phosphorus, which are available in the ocean as nitrate, nitrite, ammonia, and phosphorus. The abundances of these molecules and the intensity and quality of light exert a major influence on rates of production. The two principal categories of producers (autotrophs) in the sea are pelagic (pelagic zone) phytoplankton and benthic microalgae and macroalgae (algae). Benthic plants grow only on the fringe of the world's oceans and are estimated to produce only 5 to 10 percent of the total marine plant material in a year. Chemoautotrophs are the producers of the deep-sea vents.

      Primary productivity is usually determined by measuring the uptake of carbon dioxide or the output of oxygen. Production rates are usually expressed as grams of organic carbon per unit area per unit time. The productivity of the entire ocean is estimated to be approximately 16 × 1010 tons of carbon per year, which is about eight times that of the land.

The pelagic food chain
      Food chains in coastal waters of the world are generally regulated by nutrient concentrations. These concentrations determine the abundance of phytoplankton, which in turn provide food for the primary consumers, such as protozoa and zooplankton, that the higher-level consumers—fish, squid, and marine mammals—prey upon. It had been thought that phytoplankton in the 5- to 100-micrometre size range were responsible for most of the primary production in the sea and that grazers such as copepods controlled the numbers of phytoplankton. Data gathered since 1975, however, indicate that the system is much more complex than this. It is now thought that most primary production in marine waters of the world is accomplished by single-celled 0.5- to 10-micrometre phototrophs ( bacteria and protists (protist)). Moreover, heterotrophic protists (phagotrophic protists) are now viewed as the dominant controllers of both bacteria and primary production in the sea. Current models of pelagic marine food chains picture complex interactions within a microbial food web. Larger metazoans are supported by the production of autotrophic and heterotrophic cells.

Upwelling
      The most productive waters of the world are in regions of upwelling. Upwelling in coastal waters brings nutrients toward the surface. Phytoplankton reproduce rapidly in these conditions, and grazing zooplankton also multiply and provide abundant food supplies for nekton. Some of the world's richest fisheries (fishery) are found in regions of upwelling—for example, the temperate waters off Peru and California. If upwelling fails, the effects on animals that depend on it can be disastrous. Fisheries also suffer at these times, as evidenced by the collapse of the Peruvian anchovy industry in the 1970s. The intensity and location of upwelling are influenced by changes in atmospheric circulation, as exemplified by the influence of El Niño conditions.

Seasonal (season) cycles of production
      Cycles of plankton production vary at different latitudes because seasonal patterns of light (sunlight) and temperature vary dramatically with latitude. In the extreme conditions at the poles, plankton populations crash during the constant darkness of winter and bloom in summer with long hours of light and the retreat of the ice field. In tropical waters, variation in sunlight and temperature is slight, nutrients are present in low concentrations, and planktonic assemblages do not undergo large fluctuations in abundance. There are, however, rapid cycles of reproduction and high rates of grazing and predation that result in a rapid turnover of plankton and a low standing crop. In temperate regions plankton abundance peaks in spring as temperature and the length and intensity of daylight increase. Moreover, seasonal winter storms usually mix the water column, creating a more even distribution of the nutrients, which facilitates the growth of phytoplankton. Peak zooplankton production generally lags behind that of phytoplankton, while the consumption of phytoplankton by zooplankton and phagotrophic protists is thought to reduce phytoplankton abundance. Secondary peaks in abundance occur in autumn. Seasonal peaks of some plankton are very conspicuous, and the composition of the plankton varies considerably. In spring and early summer many fish and invertebrates spawn and release eggs and larvae into the plankton, and, as a result, the meroplanktonic component of the plankton is higher at these times. General patterns of plankton abundance may be further influenced by local conditions. Heavy rainfall in coastal regions (especially areas in which monsoons prevail) can result in nutrient-rich turbid plumes (i.e., estuarine or riverine plumes) that extend into waters of the continental shelf. Changes in production, therefore, may depend on the season, the proximity to fresh water, and the timing and location of upwelling, currents, and patterns of reproduction.

Michael John Kingsford

Additional Reading
A general description of the ecology of marine life can be found in R.S.K. Barnes and R.N. Hughes, An Introduction to Marine Ecology, 2nd ed. (1988). K.H. Mann and J.R.N. Lazier, Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Ocean (1991), discusses oceanographic phenomena on a variety of spatial scales and their relevance to marine animals. Life in the sea is examined in James L. Sumich, An Introduction to the Biology of Marine Life, 5th ed. (1992); and Richard A. Davis, Jr., Oceanography: An Introduction to the Marine Environment, 2nd ed. (1991), which also treats the nature of different marine environments. John Mauchline and Tokahisa Nemoto (eds.), Marine Biology: Its Accomplishment and Future Prospect (1991), covers such topics as marine physiology and ecosystems, benthos and the impact of pollutants, phytoplankton studies, and polar seas. Richard S. Boardman, Alan H. Cheetham, and Albert J. Rowell (eds.), Fossil Invertebrates (1987), describes fossil invertebrate taxonomy in detail and gives an account of the geologic age of environments in which fossils were found. Richard C. Brusca and Gary J. Brusca, Invertebrates (1990), reviews the taxonomy of both marine and terrestrial invertebrates.Karl F. Lagler et al., Ichthyology, 2nd ed. (1977), is a general text. Harold C. Bold and Michael J. Wynne, Introduction to the Algae: Structure and Reproduction, 2nd ed. (1985), discusses the distribution, reproduction, cultivation, classification, and fossil record of algae. E.B. Sherr and B.F. Sherr, “Planktonic Microbes: Tiny Cells at the Base of the Ocean's Food Webs,” Trends in Ecology & Evolution, 6(2):50–54 (1991), reviews the role of microbes in the ocean. John D. Gage and Paul A. Tyler, Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor (1991), looks at organisms of the deep sea and deep-sea vents. M.J. Kingsford, "Biotic and Abiotic Structure in the Pelagic Environment: Importance to Small Fishes,” Bulletin of Marine Science, 53(2):393–415 (1993), examines such structures as marine snow and drifting algae, among other topics. R. Robin Baker (ed.), Fantastic Journeys: The Marvels of Animal Migration (1991), traces the migrations of aquatic and terrestrial animals. J.A. Gulland (ed.), Fish Population Dynamics: The Implications for Management, 2nd ed. (1988), contains studies on fisheries of the world and why populations vary.Michael John Kingsford

* * *


Universalium. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Marine ecosystem — Coral reefs form complex marine ecosystems with tremendous biodiversity …   Wikipedia

  • Large marine ecosystem — Large marine ecosystems (LMEs) are regions of the world s oceans, encompassing coastal areas from river basins and estuaries to the seaward boundaries of continental shelves and the outer margins of the major ocean current systems. They are… …   Wikipedia

  • Marine habitats — Coral reefs provide marine habitats for tube sponges, which in turn become marine habitats for fishes Littoral zone …   Wikipedia

  • Tropical marine ecosystem — Tropical marine climate Islands and coastal areas 10° to 20° north or south of the equator usually have a tropical marine climate.The climate of the tropical marine system is influenced by the sea. There are two main seasons the wet season and… …   Wikipedia

  • Marine spatial planning — (MSP) is a tool that brings together multiple users of the ocean – including energy, industry, government, conservation and recreation – to make informed and coordinated decisions about how to use marine resources sustainably. MSP uses maps to… …   Wikipedia

  • Marine larval ecology — is the study of the factors influencing the dispersing larval stage exhibited by many marine invertebrates and fishes. Marine organisms with a larval stage usually release large numbers of larvae into the water column, where these larvae develop… …   Wikipedia

  • Marine vertebrate — Marine vertebrates are vertebrates which live in a marine environment. These primarily include fish, seabirds, marine reptiles, and marine mammals. These animals have an internal skeleton and make up about 4%[citation needed] of the sea s animal… …   Wikipedia

  • Ecosystem-based management — is an environmental management approach that looks at all the links among living and nonliving resources within an ecosystem, rather than considering single issues in isolation. It is most often applied towards coastal marine systems and… …   Wikipedia

  • Marine Stewardship Council — Type Non profit organization Industry Sustainable seafood ecolabel programme Founded …   Wikipedia

  • Marine protected area — Milford Sound, New Zealand is a Strict Marine Reserve (Category Ia) Mitre Peak, the mountain at left, rises 1,692 m (5,551 ft) above the sea.[1] Marine protected areas, like any protected area, are regions in which human activity has… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”