compass


compass
compassable, adj.compassless, adj.
/kum"peuhs/, n.
1. an instrument for determining directions, as by means of a freely rotating magnetized needle that indicates magnetic north.
2. the enclosing line or limits of any area; perimeter: You can find anything you want downtown within the compass of ten square blocks.
3. space within limits; area; extent; range; scope: the narrow compass of the strait; the broad compass of the novel.
4. Also called range. the total range of tones of a voice or of a musical instrument.
5. due or proper limits; moderate bounds: Their behavior stayed within the compass of propriety.
6. a passing round; circuit: the compass of a year.
7. Often, compasses. an instrument for drawing or describing circles, measuring distances, etc., consisting generally of two movable, rigid legs hinged to each other at one end (usually used with pair of): to spread the legs of a compass and draw a larger circle.
8. (cap.) Astron.
a. Also called Mariner's Compass. the constellation Pyxis.
b. Compasses, the constellation Circinus.
adj.
9. curved; forming a curve or arc: a compass timber; compass roof.
v.t.
10. to go or move round; make the circuit of: It would take a week to compass his property on foot.
11. to extend or stretch around; hem in; surround; encircle: An old stone wall compasses their property.
12. to attain or achieve; accomplish; obtain.
13. to contrive; plot; scheme: to compass a treacherous plan.
14. to make curved or circular.
15. to comprehend; to grasp, as with the mind: His mind could not compass the extent of the disaster.
[1250-1300; (v.) ME compassen < OF compasser to measure < VL *compassare, equiv. to compass(us) equal step (L com- COM- + passus PACE1) + -are v. suffix; (n.) ME compas < OF, deriv. of compasser]
Syn. 3. See range.

* * *

In navigation or surveying, the chief device for direction finding on the Earth's surface.

Compasses may operate on magnetic or gyroscopic (see gyroscope) principles or by determining the direction of the Sun or a star. The oldest and most familiar type is the magnetic compass, used in different forms in aircraft, ships, and land vehicles and by surveyors. Magnetic compasses work as they do because the Earth itself is a magnet with a north-south field (see geomagnetic field) that causes freely moving magnets to align themselves with the field.

* * *

▪ navigational instrument
 in navigation or surveying, the primary device for direction-finding on the surface of the Earth. Compasses may operate on magnetic or gyroscopic principles or by determining the direction of the Sun or a star.

 The oldest and most familiar type of compass is the magnetic compass, which is used in different forms in aircraft, ships, and land vehicles and by surveyors. Sometime in the 12th century, mariners in China and Europe made the discovery, apparently independently, that a piece of lodestone (magnetite), a naturally occurring magnetic ore, when floated on a stick in water, tends to align itself so as to point in the direction of the polestar. This discovery was presumably quickly followed by a second, that an iron or steel needle touched by a lodestone for long enough also tends to align itself in a north-south direction. From the knowledge of which way is north, of course, any other direction can be found.

 The reason magnetic (magnet) compasses work as they do is that the Earth itself acts as an enormous bar magnet with a north-south field that causes freely moving magnets to take on the same orientation. The direction of the Earth's magnetic field is not quite parallel to the north-south axis of the globe, but it is close enough to make an uncorrected compass a reasonably good guide. The inaccuracy, known as variation (or declination), varies in magnitude from point to point upon the Earth. The deflection of a compass needle due to local magnetic influences is called deviation.

      Over the centuries a number of technical improvements have been made in the magnetic compass. Many of these were pioneered by the English, whose large empire was kept together by naval power and who hence relied heavily upon navigational devices. By the 13th century the compass needle had been mounted upon a pin standing on the bottom of the compass bowl. At first only north and south were marked on the bowl, but then the other 30 principal points of direction were filled in. A card with the points painted on it was mounted directly under the needle, permitting navigators to read their direction from the top of the card. The bowl itself was subsequently hung on gimbals (rings on the side that let it swing freely), ensuring that the card would always be level. In the 17th century the needle itself took the shape of a parallelogram, which was easier to mount than a thin needle.

      During the 15th century navigators began to understand that compass needles do not point directly to the North Pole but rather to some nearby point; in Europe, compass needles pointed slightly east of true north. To counteract this difficulty, British navigators adopted conventional meridional compasses, in which the north on the compass card and the “needle north” were the same when the ship passed a point in Cornwall, England. (The magnetic poles, however, wander in a predictable manner—in more recent centuries Europeans have found magnetic north to be west of true north—and this must be considered for navigation.)

      In 1745 Gowin Knight (Knight, Gowin), an English inventor, developed a method of magnetizing steel in such a way that it would retain its magnetization for long periods of time; his improved compass needle was bar-shaped and large enough to bear a cap by which it could be mounted on its pivot. The Knight compass was widely used.

      Some early compasses did not have water in the bowl and were known as dry-card compasses; their readings were easily disturbed by shocks and vibration. Although they were less affected by shock, liquid-filled compasses were plagued by leaks and were difficult to repair when the pivot became worn. Neither the liquid nor the dry-card type was decisively advantageous until 1862, when the first liquid compass was made with a float on the card that took most of the weight off the pivot. A system of bellows was invented to expand and contract with the liquid, preventing most leaks. With these improvements liquid compasses made dry-card compasses obsolete by the end of the 19th century.

      Modern mariners' compasses are usually mounted in binnacles, cylindrical pedestals with provision for illuminating the compass face from below. Each binnacle contains specially placed magnets and pieces of steel that cancel the magnetic effects of the metal of the ship. Much the same kind of device is used aboard aircraft, except that, in addition, it contains a corrective mechanism for the errors induced in magnetic compasses when airplanes suddenly change course. The corrective mechanism is a gyroscope (q.v.), which has the property of resisting efforts to change its axis of spin. This system is called a gyromagnetic compass.

      Gyroscopes are also employed in a type of nonmagnetic compass called the gyrocompass. The gyroscope is mounted in three sets of concentric rings connected by gimbals, each ring spinning freely. When the initial axis of spin of the central gyroscope is set to point to true north, it will continue to do so and will resist efforts to realign it in any other direction; the gyroscope itself thus functions as a compass. If it begins to precess (wobble), a pendulum weight pulls it back into line. Gyrocompasses are generally used in navigation systems because they can be set to point to true north rather than to magnetic north.

* * *


Universalium. 2010.

Synonyms:

Look at other dictionaries:

  • Compass — Com pass (k[u^]m pas), n. [F. compas, fr. LL. compassus circle, prop., a stepping together; com + passus pace, step. See {Pace}, {Pass}.] 1. A passing round; circuit; circuitous course. [1913 Webster] They fetched a compass of seven day s journey …   The Collaborative International Dictionary of English

  • Compass-G1 — Major contractors CAST Bus DFH 3 Mission type Navigation Launch date 16 January 2010 Carrier rocket …   Wikipedia

  • COMPASS — is an acronym for COMP rehensive ASS embler. COMPASS is a macro assembly language on Control Data Corporation s 3000 series, and on the 60 bit CDC 6000 series, 7600 and Cyber 70 and 170 series mainframe computers.There are two flavors of COMPASS… …   Wikipedia

  • COMPASS-1 — Typ: CubeSat Land: Deutschland Behörde: FH Aachen, FB6 …   Deutsch Wikipedia

  • Compass — steht für Compass (Satellitennavigation) der Name des chinesischen Satellitennavigationssystems Compass Group ein britisches Nahrungsmittelunternehmen COMPASS Experiment ein Detektor am Teilchenbeschleuniger SPS COMPASS 1 ein von Studenten… …   Deutsch Wikipedia

  • Compass-1 — Operator Fachhochschule Aachen Bus 1U CubeSat Mission type Remote Sensing/Imaging Technology Demonstration Launch date 03:53:51 GMT, 28 April 2008 …   Wikipedia

  • Compass — Com pass (k[u^]m pas), v. t. [imp. & p. p. {Compassed} (k[u^]m past); p. pr. & vb. n. {Compassing}.] [F. compasser, LL. compassare.] 1. To go about or entirely round; to make the circuit of. [1913 Webster] Ye shall compass the city seven times.… …   The Collaborative International Dictionary of English

  • Compass FM — City of license Grimsby Broadcast area North East Lincolnshire Slogan The Music You Love Frequency …   Wikipedia

  • COMPASS — steht für Compass (Satellitennavigation) der Name des chinesischen Satellitennavigationssystems COMPASS Experiment ein Detektor am Teilchenbeschleuniger SPS COMPASS 1 ein von Studenten entwickelter Kleinsatellit Kinder und Jugend… …   Deutsch Wikipedia

  • COMPASS-2 — (auch Compass Two) ist ein Kleinsatellit im CubeSat Format, den Studenten der FH Aachen und derzeit zwei Diplomanden der RWTH Aachen seit Anfang 2009 entwickeln. Er soll ein Triple CubeSat werden und ist mit 100x100x340,5 mm³ und ca. 4 kg Masse… …   Deutsch Wikipedia

  • COMPASS 1 — COMPASS 1, auch Compass One ist ein Kleinsatellit im CubeSat Format, den Studenten der Fachhochschule Aachen seit 2003 entwickeln. Er wiegt ungefähr ein Kilogramm. Seine Galliumarsenid Solarpanele liefern eine elektrische Leistung von zwei Watt.… …   Deutsch Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.