chemical engineering


chemical engineering
chemical engineer.
the science or profession of applying chemistry to industrial processes.
[1900-05]

* * *

Academic discipline and industrial activity concerned with developing processes and designing and operating plants to change materials' physical or chemical states.

With roots in the inorganic and coal-based chemical industries of western Europe and the oil-refining industry in North America, it was spurred by the need to supply chemicals and products during the two World Wars. The field includes research, design, construction, operation, sales, and management activities. Chemical engineers must master chemistry (including the nature of chemical reactions, the effects of temperature and pressure on equilibrium, and the effects of catalysts on reaction rates), physics, and mathematics. The engineering aspect, involving fluid flow (see deformation and flow) and heat and mass transfer, is broken down into "unit operations," including vaporization, distillation, absorption, filtration, extraction, crystallization, agitation and mixing, drying, and size reduction; each is described mathematically, and its principles apply to any material. Chemical engineers work not only in the chemical and oil industries but also in such processing industries as foods, paper, textiles, plastics, nuclear, and biotechnology.

* * *

Introduction

      the development of processes and the design and operation of plants in which materials undergo changes in their physical or chemical (chemical industry) state. Applied throughout the process industries, it is founded on the principles of chemistry, physics, and mathematics.

      The laws of physical chemistry and physics govern the practicability and efficiency of chemical engineering operations. Energy changes, deriving from thermodynamic considerations, are particularly important. Mathematics is a basic tool in optimization and modeling. Optimization means arranging materials, facilities, and energy to yield as productive and economical an operation as possible. Modeling is the construction of theoretical mathematical prototypes of complex process systems, commonly with the aid of computers.

History
      Chemical engineering is as old as the process industries. Its heritage dates from the fermentation and evaporation processes operated by early civilizations. Modern chemical engineering emerged with the development of large-scale, chemical-manufacturing operations in the second half of the 19th century. Throughout its development as an independent discipline, chemical engineering has been directed toward solving problems of designing and operating large plants for continuous production.

      Manufacture of chemicals in the mid-19th century consisted of modest craft operations. Increase in demand, public concern at the emission of noxious effluents, and competition between rival processes provided the incentives for greater efficiency. This led to the emergence of combines with resources for larger operations and caused the transition from a craft to a science-based industry. The result was a demand for chemists with knowledge of manufacturing processes, known as industrial chemists or chemical technologists. The term chemical engineer was in general use by about 1900. Despite its emergence in traditional chemicals manufacturing, it was through its role in the development of the petroleum industry that chemical engineering became firmly established as a unique discipline. The demand for plants capable of operating physical separation processes continuously at high levels of efficiency was a challenge that could not be met by the traditional chemist or mechanical engineer.

      A landmark in the development of chemical engineering was the publication in 1901 of the first textbook on the subject, by George E. Davis, a British chemical consultant. This concentrated on the design of plant items for specific operations. The notion of a processing plant encompassing a number of operations, such as mixing, evaporation, and filtration, and of these operations being essentially similar, whatever the product, led to the concept of unit operations. This was first enunciated by the American chemical engineer Arthur D. Little in 1915 and formed the basis for a classification of chemical engineering that dominated the subject for the next 40 years. The number of unit operations—the building blocks of a chemical plant—is not large. The complexity arises from the variety of conditions under which the unit operations are conducted.

      In the same way that a complex plant can be divided into basic unit operations, so chemical reactions involved in the process industries can be classified into certain groups, or unit processes (e.g., polymerizations, esterifications, and nitrations), having common characteristics. This classification into unit processes brought rationalization to the study of process engineering.

      The unit approach suffered from the disadvantage inherent in such classifications: a restricted outlook based on existing practice. Since World War II, closer examination of the fundamental phenomena involved in the various unit operations has shown these to depend on the basic laws of mass transfer, heat transfer, and fluid flow. This has given unity to the diverse unit operations and has led to the development of chemical engineering science in its own right; as a result, many applications have been found in fields outside the traditional chemical industry.

      Study of the fundamental phenomena upon which chemical engineering is based has necessitated their description in mathematical form and has led to more sophisticated mathematical techniques. The advent of digital computers (computer) has allowed laborious design calculations to be performed rapidly, opening the way to accurate optimization of industrial processes. Variations due to different parameters, such as energy source used, plant layout, and environmental factors, can be predicted accurately and quickly so that the best combination can be chosen.

Chemical engineering functions
      Chemical engineers are employed in the design and development of both processes and plant items. In each case, data and predictions often have to be obtained or confirmed with pilot experiments. Plant operation and control is increasingly the sphere of the chemical engineer rather than the chemist. Chemical engineering provides an ideal background for the economic evaluation of new projects and, in the plant construction sector, for marketing.

Branches of chemical engineering
      The fundamental principles of chemical engineering underlie the operation of processes extending well beyond the boundaries of the chemical industry, and chemical engineers are employed in a range of operations outside traditional areas. Plastics, polymers, and synthetic fibres involve chemical-reaction engineering problems in their manufacture, with fluid flow and heat transfer considerations dominating their fabrication. The dyeing of a fibre is a mass-transfer problem. Pulp and paper manufacture involve considerations of fluid flow and heat transfer. While the scale and materials are different, these again are found in modern continuous production of foodstuffs. The pharmaceuticals industry presents chemical engineering problems, the solutions of which have been essential to the availability of modern drugs. The nuclear industry makes similar demands on the chemical engineer, particularly for fuel manufacture and reprocessing. Chemical engineers are involved in many sectors of the metals processing industry, which extends from steel manufacture to separation of rare metals.

      Further applications of chemical engineering are found in the fuel industries. In the second half of the 20th century, considerable numbers of chemical engineers have been involved in space exploration, from the design of fuel cells to the manufacture of propellants. Looking to the future, it is probable that chemical engineering will provide the solution to at least two of the world's major problems: supply of adequate fresh water in all regions through desalination of seawater and environmental control through prevention of pollution.

Carl Hanson Ed.

Additional Reading
A treatment of the history of the field is contained in William F. Furter (ed.), History of Chemical Engineering (1980), and A Century of Chemical Engineering (1982). Classic works include George E. Davis, A Handbook of Chemical Engineering, 2nd ed., 2 vol. (1904); and William H. Walker et al., Principles of Chemical Engineering, 3rd ed., rev. and rewritten (1937). More recent information may be found in Don W. Green and James O. Maloney (eds.), Perry's Chemical Engineers' Handbook, 6th ed. (1984), a comprehensive handbook; D. Joseph Hagerty, Earl R. Gerhard, and Charles A. Plank, Opportunities in Chemical Engineering (1979, reissued 1985); J.M. Coulson, Chemical Engineering: An Introduction to Design (1983); and J.M. Coulson et al., Chemical Engineering, 6 vol. in various editions (1977–96), a general textbook.Carl Hanson Ed.

* * *


Universalium. 2010.

Look at other dictionaries:

  • chemical engineering — ➔ engineering * * * chemical engineering UK US noun [U] ► the design and operation of machinery used in industrial chemical processes …   Financial and business terms

  • chemical engineering — ► NOUN ▪ the branch of engineering concerned with the design and operation of industrial chemical plants …   English terms dictionary

  • chemical engineering — n. the science or profession of applying chemistry to industrial uses …   English World dictionary

  • Chemical engineering — Process engineers design, construct and operate plants Chemical engineering is the branch of engineering that deals with the application of physical science (e.g., chemistry and physics), and life sciences (e.g., biology, microbiology and… …   Wikipedia

  • chemical engineering — noun 1. the branch of engineering that is concerned with the design and construction and operation of the plants and machinery used in industrial chemical processes • Hypernyms: ↑engineering, ↑engineering science, ↑applied science, ↑technology 2 …   Useful english dictionary

  • chemical engineering — N UNCOUNT Chemical engineering is the designing and constructing of machines that are needed for industrial chemical processes …   English dictionary

  • chemical engineering — cheminė inžinerija statusas T sritis chemija apibrėžtis Mokslas, nagrinėjantis bendruosius chemijos technologijos procesus ir jų atlikimui naudojamą įrangą. atitikmenys: angl. chemical engineering rus. процессы и аппараты химической технологии …   Chemijos terminų aiškinamasis žodynas

  • chemical engineering — cheminė technologija statusas T sritis fizika atitikmenys: angl. chemical engineering vok. chemische Technologie, f rus. химическая технология, f pranc. technologie chimique, f …   Fizikos terminų žodynas

  • chemical engineering — chemical engi neering n [U] the study of machines used in industrial chemical processes >chemical engineer n …   Dictionary of contemporary English

  • chemical engineering — chemical engi neering noun uncount the development of new chemical substances and processes that can be used in industry …   Usage of the words and phrases in modern English


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.