sound recording


sound recording

Introduction

      transcription of vibrations in air that are perceptible as sound onto a storage medium, such as a phonograph disc. In sound reproduction the process is reversed so that the variations stored on the medium are converted back into sound waves. The three principal media that have been developed for sound recording and reproduction are the mechanical (phonographic disc), magnetic (audiotape), and optical (digital compact disc) systems.

The phonograph disc
      A monaural phonograph record makes use of a spiral 90° V-shaped groove impressed into a plastic disc. As the record revolves at 33 1/3 rotations per minute, a tiny “needle,” or stylus, simultaneously moves along the groove and vibrates back and forth parallel to the surface of the disc and perpendicular to the groove, tracing out the sound wave. The upper end of the stylus is connected to a tiny magnet, which moves back and forth through a small coil, inducing an electrical voltage that re-creates the recorded sound wave. The rate of oscillation of the stylus determines the frequency of the sound, while the amplitude of the oscillation determines its loudness.

      Just as the use of two eyes creates a perception of depth, so can the effect of musical (music) “presence” be achieved by stereophonics (stereophonic sound system), recording music with two appropriately positioned microphones and playing it back on two separated loudspeakers. A stereophonic recording provides the two separate signal channels as oscillations perpendicular to either one or the other of the faces of the record groove. The single coil of the monaural pickup is replaced by two coils, which sense the motion of the stylus perpendicular to each groove wall; the inside wall is used as the left channel and the outside wall as the right channel. These two signals are then fed into an audio amplifier and to the loudspeakers.

      The criterion for frequency control of a recording is that the variation in frequency should not be observable to the ear—i.e., less than about 0.1 percent, which is less than the just noticeable difference in frequency over most of the audible frequency range. In order to eliminate both slow variations in pitch of the recording, called wow, and rapid variations, called flutter (flutter and wow), the rotation speed of the record is carefully controlled by use of a heavy turntable and a precision motor. Mechanical vibration of the turntable is isolated from the stylus to avoid “rumble.” The stylus itself is elliptical in shape, with the long axis of the ellipse oriented across the groove. In order to achieve good compliance—that is, the ability of the stylus to track the groove and produce a linear signal—the tip of the stylus must be less than 25 micrometres (0.025 millimetre, or 1/1000 inch) in size, so that it is generally made of industrial diamond.

      Faraday's law of magnetic (Faraday's law of induction) induction introduces some important features into the science of phonograph records. According to this law, the electric potential induced in the coil of the magnetic pickup is directly proportional to the magnetic field of the moving magnet in the pickup and inversely proportional to the period of the oscillation. This means that, in order to produce a sound wave of constant amplitude at all frequencies, it is necessary to reduce the amplitude of the motion of the stylus at high frequencies and greatly increase that motion at low frequencies. Unfortunately, limitations in the compliance of such a recording system make it impossible for the stylus to accurately track a sufficiently large-amplitude oscillation at low frequencies. Furthermore, the inherent graininess of the plastic from which phonographic recordings are pressed creates high-frequency vibrations of the stylus, which are heard as high-frequency noise, or hiss. Because of these problems, the electrical signal must be amplified at very high frequencies, attenuated at very low frequencies, and approximately linearized for midrange frequencies before the signal is converted into a groove shape and impressed onto the plastic disc—a process called pre-emphasis. Upon playback this sequence is reversed in a process called equalization, providing the listener with a linear and realistic sound.

The audiotape
      Audiocassette tape recording also makes use of electromagnetic phenomena to record and reproduce sound waves. The tape consists of a plastic backing coated with a thin layer of tiny particles of magnetic powder, usually ferric oxide (Fe2O3) and to a lesser extent chromium dioxide (CrO2). The recording head of the tape deck consists of a tiny C-shaped magnet with its gap adjacent to the moving tape. The incoming sound wave, having been converted by a microphone into an electrical signal, produces a time-varying magnetic field in the gap of the magnet. As the tape moves past the recording head the powder is magnetized in such a way that the tape carries a record of the shape of the wave being recorded. The frequency of the impressed signal determines the distance along the tape over which the impressed magnetic field must be reversed, and the amplitude of the signal determines the extent of the magnetization of the tape.

      There are inherent problems with the magnetic recording system. As magnetic domains are flipped in magnetizing the material, they exhibit a certain magnetic inertia, or unwillingness to respond, so that it requires a greater magnetic field than expected to magnetize the oxide on the tape. This effect, known as hysteresis, leads to distortion of the wave shape on the tape. In order to overcome this problem, a sinusoidal signal of about 100 kilohertz is added to the wave immediately before the wave is impressed onto the tape. Known as equalization bias, this signal has the effect of linearizing an inherently nonlinear magnetic medium, largely eliminating distortion.

      Another problem arises from the inability of the recording system to organize completely the magnetic domains in these tiny magnetic crystals. The resulting random orientation of the domains results in random noise, which is heard by the listener as tape hiss. Because lower frequencies are more effective in magnetizing the tape, and because the random variation in magnetization is a microscopic effect, tape hiss is primarily a high-frequency phenomenon. Several systems have been designed to deal with this problem, the most prevalent of which is Dolby noise reduction. In the Dolby system the higher-frequency components of a sound wave are amplified before the signal is impressed on the tape so that their amplitudes are well above the amplitude of the tape hiss. On playback, the high frequencies are attenuated after they are read off the tape, reducing their amplitudes to the correct level.

      The compact disc, or digital disc, uses digital technology to avoid or mitigate some of the technical problems and requirements inherent in phonograph and audiotape recording. Whereas both phonograph recordings and audiotape have limited dynamic range and frequency response, the compact disc has both a greater dynamic range—ideally, over 90 decibels—and a linear frequency response from less than 20 hertz to over 20,000 hertz—greater than that of the human ear.

      Digital recording (digital sound recording) uses sampling of the sound wave at a series of points at equal time intervals along the wave to approximate the full wave. In order to maintain frequency response up to 20 kilohertz, the limit of human hearing, it is necessary to sample at slightly above twice that frequency, so that compact discs actually have a sample rate of 44.1 kilohertz. The signal level is divided into 215 (about 32,000) equal intervals. With such a large number of intervals being employed, both large and small wave intensities can be reproduced accurately. Indeed, intensity variations of less than one decibel (the approximate value of the intensity just noticeable difference of the ear) can be achieved over the entire dynamic range of the compact disc.

      Each sampled point on the wave is encoded in binary form, and a series of points are impressed on the compact disc. Playback is essentially the reverse of recording. Each point on the wave is read in and stored in a computer memory called a first-in first-out buffer. Using an internal 44.1-kilohertz clock, each point is converted in order into analog form and then input into a standard power amplifier and loudspeaker. The time scale for the recording is exactly reproduced, eliminating the frequency instabilities inherent in other types of recording.

Richard E. Berg

Additional Reading
Harry F. Olson, Acoustical Engineering (1957), and Modern Sound Reproduction (1972), are the advanced classics in the field, including detailed discussions of loudspeaker design. An excellent introduction to audio equipment is provided in Institute of High Fidelity, Official Guide to High Fidelity, 2nd ed. (1978). A later introduction to audio reproduction is offered in Kenneth W. Johnson, Willard C. Walker, and John D. Cutnell, The Science of Hi-Fidelity, 2nd ed. (1981). Advanced treatment of electromechanical transducers is found in Josef Merhaut, Theory of Electroacoustics, trans. from Czech (1981); John Borwick, Microphones: Technology and Technique (1990); and Martin Colloms, High Performance Loudspeakers, 4th ed. (1991). John Eargle, Sound Recording, 2nd ed. (1980), is of interest for its treatment of older audio reproduction technology, including LP disc recordings and quadraphonic sound. Eargle's later work, Handbook of Recording Engineering, 2nd ed. (1992), also covers digital sound recording. Both audio and video magnetic tape technology is discussed in John C. Mallinson, The Foundations of Magnetic Recording (1987); and C. Denis Mee and Eric D. Daniel, Magnetic Recording, 3 vol. (1987–88). For digital techniques, see Ken C. Pohlmann, Principles of Digital Audio, 2nd ed. (1989), on the compact disc; and John Watkinson, RDAT (1991), on the rotary head digital audiotape.Richard E. Berg

 transcription of vibrations in air that are perceptible as sound onto a storage medium, such as a compact disc. In sound reproduction the process is reversed so that the variations stored on the medium are converted back into sound waves. The three principal media that have been developed for sound recording and reproduction are the mechanical (phonograph disc), optical (motion-picture sound tracks and digital compact discs), and magnetic (recorded tape) systems.

 The American inventor Thomas Alva Edison (Edison, Thomas Alva) developed the “talking machine,” which could both record and reproduce sound, in 1877. The original Edison cylinder recordings used indentations embossed into a sheet of tinfoil by a vibrating stylus attached to a diaphragm.

 Emil Berliner (Berliner, Emil), the German-born American inventor of the Gramophone, introduced the flat disc, as well as the practice of using electroforming to make a negative of the master, which then could serve to mold copies.

      Early sound recording and reproduction relied entirely on acoustic means. In the early 1920s the vacuum-tube amplifier, invented by the American Lee De Forest (De Forest, Lee), came into use, marking the transition from acoustic to electrical recording. Microphones replaced acoustic horns, and soon there was developed the modern electric phonograph—consisting of an amplifier, a motor-driven turntable (that often incorporated a record-changing device), a cartridge, and loudspeakers. The 78-rpm (revolutions per minute) record, originally made of shellac and later of synthetic thermoplastic resins, became standard; it had a playing time of about 41/2 minutes.

 The long-playing (LP) record, first introduced in 1948, was designed to be played at a speed of 331/3 rpm; it used “microgrooves,” allowing up to 30 minutes of playing time per side. The 45-rpm disc, playing up to eight minutes per side, was introduced in 1949. Stereophonic recordings, with two separate channels of sound recorded in the same groove, were introduced in 1958. Quadraphonic discs, with the two additional channels often used to reproduce ambient sound, became available in the early 1970s but were not successful commercially.

      The first optical system (optical sound recording) was invented by De Forest, who by 1923 had developed techniques for transcribing sound waves into impulses of light that could be photographed on a strip of film. When the developed film was then passed between a light source and a photoelectric cell in the motion-picture projector, the images were transformed back into electric voltages that could be converted into sound through a loudspeaker system.

 A second type of optical recording is the digital compact disc (CD). Unlike all other methods of recording and reproduction, which create “analogies” of the original sound and thus are called analogue methods, digital recording samples the sound at specified intervals and converts the samples into binary (base 2) numbers that are then recorded on tape as a series of pulses. Digitally mastered tapes converted into conventional phonograph discs first appeared in the 1970s, and fully digital compact discs, which are read, or “played,” by a laser, became available in the early 1980s and became the most popular mode by the beginning of the 1990s. Other digital modes being introduced were the digital audio tape (DAT) and the digital compact cassette (DCC).

      Magnetic systems (magnetic recording) of recording sound date to the 1890s, when the Danish engineer Valdemar Poulsen invented a device that stored electrical information by magnetizing particles on a steel wire. American and German scientists had developed magnetic tape by the 1920s, and during the following decade recorders were further refined, but not until after World War II did the tape recorder begin to have widespread application in recording music.

      In tape recording, the electrical signal to be recorded is usually applied to the tape by means of a “head,” consisting of a coil wound around a core of magnetic iron, that has a gap at the point where the tape moves across its surface. The current in the coil produces a magnetomotive force across the gap, magnetizing the particles on the tape. In reproduction the tape is passed over the playback head, and the magnetized portions of the tape cause the magnetic flux in the core to change, generating a voltage. Recording tapes consist of a plastic-base film coated with a magnetic material, usually iron oxide, although chromium dioxide and pure metal particles also are used.

      The principal tape-recording formats are the open reel and cassette. Open-reel recorders, which were the first to be developed, are now used most commonly for professional recording. They operate at several speeds and have great flexibility, including the ability to record up to 24 separate tracks. A cassette consists of a feed reel of tape and a take-up hub enclosed in a sealed rectangular package. Although the cassette is less flexible and generally has lower fidelity than the open-reel format, it became more popular, largely because of its ease of operation.

* * *


Universalium. 2010.

Look at other dictionaries:

  • sound recording — A type of copyrighted work resulting from the fixation of a series of musical or other sounds (including narration or spoken words) in some medium. The result is known as a phonorecord. A sound recording copyright protects the way that the… …   Law dictionary

  • sound recording — noun a recording of acoustic signals • Syn: ↑audio recording, ↑audio • Hypernyms: ↑recording • Hyponyms: ↑audiotape, ↑phonograph record, ↑ph …   Useful english dictionary

  • sound recording — garso įrašymas statusas T sritis radioelektronika atitikmenys: angl. sound recording vok. Tonaufzeichnung, f rus. звукозапись, f pranc. enregistrement du son, m …   Radioelektronikos terminų žodynas

  • Sound recording and reproduction — Sound recorder redirects here. For the audio recording program computer software, see Sound Recorder (Windows). Sound recording and reproduction is an electrical or mechanical inscription and re creation of sound waves, such as spoken voice,… …   Wikipedia

  • Sound recording copyright symbol — ℗ Sound recording copyright symbol Punctuation apostrophe ( …   Wikipedia

  • History of sound recording — Methods and media for sound recording are varied and have undergone significant changes between the first time sound was actually recorded for later playback until now. Technology Mechanical recording The first devices for recording sound were… …   Wikipedia

  • Magnetic tape sound recording — Klaudia Wilde from the German WDR radio archive with a broadcast tape from 1990 The use of magnetic tape for sound recording originated around 1930. Magnetizable tape revolutionized both the radio broadcast and music recording industries. It did… …   Wikipedia

  • Phillips' Sound Recording Services — Infobox Person name = Phillips Sound Recording Services image size = caption = Percy Phillips in his studio, 1977 birth name = Percy Francis Phillips birth date = March 1896 birth place = Warrington death date = 1984 death place = Royal Liverpool …   Wikipedia

  • digital sound recording —       method of preserving sound in which audio signals are transformed into a series of pulses that correspond to patterns of binary digits (i.e., 0 s and 1 s) and are recorded as such on the surface of a magnetic tape or optical disc. A digital …   Universalium

  • IIFA Best Sound Recording Award — The IIFA Sound Recording is a technical award chosen ahead of the ceremonies.The winners are listed below: See also * IIFA Awards * Bollywood * Cinema of IndiaExternal links* [http://www.hindu.com/thehindu/holnus/009200804252175.htm 2008 winners] …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.