Analytical Engine


Analytical Engine

      generally considered the first computer, designed and partly built by the English inventor Charles Babbage (Babbage, Charles) in the 19th century (he worked on it until his death in 1871). While working on the Difference Engine, a simpler calculating machine commissioned by the British government, Babbage began to imagine ways to improve it. Chiefly he thought about generalizing its operation so that it could perform other kinds of calculations. By the time funding ran out for his Difference Engine in 1833, he had conceived of something far more revolutionary: a general-purpose computing machine called the Analytical Engine.

      The Analytical Engine was to be a general-purpose, fully program-controlled, automatic mechanical digital computer. It would be able to perform any calculation set before it. There is no evidence that anyone before Babbage had ever conceived of such a device, let alone attempted to build one. The machine was designed to consist of four components: the mill, the store, the reader, and the printer. These components are the essential components of every computer today. The mill was the calculating unit, analogous to the central processing unit (CPU) in a modern computer; the store was where data were held prior to processing, exactly analogous to memory and storage in today's computers; and the reader and printer were the input and output devices (input/output device).

      As with the Difference Engine, the project was far more complex than anything theretofore built. The store was to be large enough to hold 1,000 50-digit numbers; this was larger than the storage capacity of any computer built before 1960. The machine was to be steam-driven and run by one attendant. The printing capability was also ambitious, as it had been for the Difference Engine: Babbage wanted to automate the process as much as possible, right up to producing printed tables of numbers.

      The reader was another new feature of the Analytical Engine. Data (numbers) were to be entered on punched cards, using the card-reading technology of the Jacquard loom. Instructions were also to be entered on cards, another idea taken directly from Joseph-Marie Jacquard. The use of instruction cards would make it a programmable device and far more flexible than any machine then in existence. Another element of programmability was to be its ability to execute instructions in other than sequential order. It was to have a kind of decision-making ability in its conditional control transfer, also known as conditional branching, whereby it would be able to jump to a different instruction depending on the value of some data. This extremely powerful feature was missing in many of the early computers of the 20th century.

      By most definitions, the Analytical Engine was a real computer as understood today—or would have been, had Babbage not run into implementation problems again. Actually building his ambitious design was judged infeasible given the current technology, and Babbage's failure to generate the promised mathematical tables with his Difference Engine had dampened enthusiasm for further government funding. Indeed, it was apparent to the British government that Babbage was more interested in innovation than in constructing tables.

      All the same, Babbage's Analytical Engine was something new under the sun. Its most revolutionary feature was the ability to change its operation by changing the instructions on punched cards. Until this breakthrough, all the mechanical aids to calculation were merely calculators or, like the Difference Engine, glorified calculators. The Analytical Engine, although not actually completed, was the first machine that deserved to be called a computer.

Paul A. Freiberger Michael R. Swaine
 

* * *


Universalium. 2010.

Look at other dictionaries:

  • Analytical Engine — Analytical Engine,   analytische Maschine …   Universal-Lexikon

  • analytical engine — noun A data processing machine invented by British mathematician Charles Babbage in 1833, the precursor of the modern computer • • • Main Entry: ↑analytic …   Useful english dictionary

  • Analytical engine — The analytical engine, an important step in the history of computers, was the design of a mechanical general purpose computer by the British mathematician Charles Babbage. It was first described in 1837, but Babbage continued to work on the… …   Wikipedia

  • Analytical Engine — Versuchsmodell der Analytical Engine Charles Babb …   Deutsch Wikipedia

  • analytical engine — Babidžo analitinė mašina statusas T sritis informatika apibrėžtis Pirmoji universali mechaninė skaičiavimo mašina. Analitinę skaičiavimo mašiną ir kompiuterių konstravimo principus sukūrė Kembridžo universiteto profesorius Čarlzas Babidžas… …   Enciklopedinis kompiuterijos žodynas

  • analytical engine — noun A mechanical general purpose computer, designed by but never built …   Wiktionary

  • Ada Byron's notes on the analytical engine — are a description and associated documents produced by Augusta Ada King, Countess of Lovelace, (born Ada Byron) on Charles Babbage s design for a mechanical computer called the analytical engine. It was never built, but Ada s notes are widely… …   Wikipedia

  • Engine (disambiguation) — An engine is a device that converts potential energy into mechanical work. Engine may also refer to:In thermodynamics: * Heat engine, a physical or theoretical device that converts thermal energy to mechanical output * Reciprocating engine, a… …   Wikipedia

  • Engine tuning — is the adjustment, modification or design of internal combustion engines to yield optimal performance, either in terms of power output or economy. It has a long history, almost as long as the development of the car in general, originating with… …   Wikipedia

  • Difference engine — For the novel by William Gibson and Bruce Sterling, see The Difference Engine. The London Science Museum s difference engine, built from Babbage s design. The design has the same precision on all columns, but when calculating converging… …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.