advanced structural ceramics


advanced structural ceramics

Introduction

      ceramic materials that demonstrate enhanced mechanical properties under demanding conditions. Because they serve as structural members, often being subjected to mechanical loading, they are given the name structural ceramics. Ordinarily, for structural applications ceramics tend to be expensive replacements for other materials, such as metals, polymers, and composites. For especially erosive, corrosive, or high-temperature environments, however, they may be the material of choice. This is because the strong chemical bonding in ceramics—described in the article ceramic composition and properties: Chemical bonds (ceramic composition and properties)—makes them exceptionally robust in demanding situations. For example, some advanced ceramics display superior wear resistance, making them ideal for tribological (wear) applications such as mineral processing equipment. Others are chemically inert and therefore are used as bone replacements in the highly corrosive environment of the human body. High bond strengths also make ceramics thermochemically inert; this property shows promising areas of application in engines for automobiles, aerospace vehicles, and power generators.

      A number of technological barriers have to be surmounted in order to make advanced structural ceramics an everyday reality. The most significant challenges are the inherent flaw sensitivity, or brittleness, of ceramics and the variability of their mechanical properties. In this article toughening methods are described and prospects for toughened ceramics assessed. The survey ends with links to articles on various established and prospective applications for advanced structural ceramics.

Toughening methods

Reinforced ceramics
      Among the strategies for achieving ceramics with improved mechanical properties, especially toughness, some involve the engineering of microstructures that either resist the propagation of cracks or absorb energy during the crack propagation process. Both goals can be achieved simultaneously in microstructures with fibrous or interlocked grains. In ceramics produced with such microstructures, cracks are deflected from a straight path, leading to a dramatic increase in crack length; at the same time particles behind the advancing crack tip bridge the crack, tending to hold it closed. Crack deflection and crack bridging also occur in whisker-reinforced and fibre-reinforced ceramic composites. The result is increased fracture surface area and much greater energy absorption.

Microcracking
      Another mechanism that can lead to increased fracture toughness in ceramics is microcracking, which occurs in single-phase polycrystalline ceramics whose grains are anisotropic (that is, whose mechanical properties vary with direction) or in intentionally biphasic polycrystalline microstructures. In these materials tiny microcracks open up to either side of the main crack path ahead of the advancing crack tip. This phenomenon has two effects. First, the energy that goes into the opening of the subsidiary cracks increases the energy needed for propagation of the main crack. Second, as the main crack propagates, microcracks opening up in the wake or process zone adjacent to the main crack but behind the crack front result in an increase in volume, which tends to close the main crack. The resistance to propagation thus increases the farther the crack propagates.

Transformation toughening
 The most promising toughening mechanism for ceramic materials involves a phase transformation; the method is referred to as transformation toughening and is illustrated in Figure 1—>. Although other materials such as alumina can be transformation-toughened, zirconia (zirconium dioxide, ZrO2) is the prototype material for this process. Pure zirconia, upon cooling below 1,150° C (2,100° F), undergoes a dramatic 3 percent volume expansion as it transforms from a tetragonal form to a monoclinic form. This expansion can be used to advantage by dispersing extremely fine tetragonal particles in a matrix of cubic zirconia or alumina. The small size of the particles (less than 1 micrometre) and their intimate contact with the matrix induce the tetragonal structure to remain stable at room temperature. Ahead of an advancing crack, however, a stress field triggers the transformation of the embedded tetragonal particles to the monoclinic form. Behind the advancing crack, a process zone forms in which all the tetragonal particles have transformed to the monoclinic form. The cumulative increase in volume exerts a closing force on the advancing crack, as well as a corresponding resistance to crack propagation that increases with crack length. Ceramics such as transformation-toughened zirconia (TTZ) are often referred to as ceramic steel because the strain, or change in dimension, in response to stress behaviour resembles that of steel instead of a brittle ceramic. Also, the underlying phase transformation is called martensitic, after a similar transformation in rapidly quenched steel to a phase known as martensite.

Prospects of toughened ceramics

Comparative toughness
      Although toughened ceramics are far less tough than metals, they represent a vast improvement over conventional ceramics and glass. Fracture toughness is defined as the stress-intensity factor at a critical point where crack propagation becomes rapid. It is given the symbol KIc and is measured in units of megapascals times the square root of the distance measured in metres (MPa√m). With glass, an extremely brittle material, having a KIc value of 1, all other materials can be assigned values relative to that of glass. Metals thus have relative KIc's in the 30–45 range (aluminum alloys) or the 40–65 range (steels). In comparison, conventional ceramics have relative fracture toughnesses in the 3–4 range and are therefore brittle like glass. Ceramics with fibrous or interlocked microstructures and particle-reinforced composites fall in the 4–6 range. Whisker-reinforced and fibre-reinforced composites have toughnesses in the 8–10 and 10–25 range, respectively. Transformation-toughened ceramics fall in the 6–15 range. At such toughness large TTZ ball bearings can be repeatedly bounced on concrete floors without noticeable surface damage.

Limitations
      Despite their superior properties, toughened ceramics have not achieved widespread use. One reason for this is that they are costly to produce. Therefore, they will not displace their metallic counterparts unless they display such cost-saving performance features as increased operating temperature or dramatically increased lifetime. Toughened ceramics also can lose their properties at elevated temperatures. As temperature rises, the driving force for the phase transformation in TTZ decreases and then disappears altogether. As a result, the material loses its toughness. Whiskers and fibres in ceramic-matrix composites are often susceptible to high-temperature oxidation. This virtually eliminates them as toughening agents, so that the ceramic matrix reverts to brittle behaviour. One of the challenges facing ceramic engineers is the engineering of tough ceramic microstructures that are stable at elevated temperatures.

Applications of advanced structural ceramics
      Advanced ceramics are employed in a number of structural applications. These are described in the articles nuclear ceramics, bioceramics, tribological ceramics, and automotive ceramics. In addition, advanced ceramics provide enhanced performance in traditional ceramic applications; these are described in the articles refractory and abrasive.

Additional Reading
The section titled “Structural Applications for Technical, Engineering, and Advanced Ceramics,” in Theodore J. Reinhart (ed.), Engineered Materials Handbook, vol. 4, Ceramics and Glasses, ed. by Samuel J. Schneider (1991), pp. 959–1014, presents an overview of advanced structural ceramics. A good introduction to ceramics in general is provided by David W. Richerson, Modern Ceramic Engineering: Properties, Processing, and Use in Design, 2nd ed., rev. and expanded (1992). The processing of advanced ceramics is described in James S. Reed, Introduction to the Principles of Ceramic Processing (1988); I.J. McColm and N.J. Clark, Forming, Shaping, and Working of High Performance Ceramics (1988); George Y. Onoda, Jr., and Larry L. Hench, Ceramic Processing Before Firing (1978); and four sections of the Reinhart work cited above: “Ceramic Powders and Processing,” pp. 41–122; “Forming and Predensification, and Nontraditional Densification Processes,” pp. 123–241; “Firing/Sintering: Densification,” pp. 242–312; and “Final Shaping and Surface Finishing,” pp. 313–376.Thomas O. Mason

* * *


Universalium. 2010.

Look at other dictionaries:

  • advanced ceramics — ▪ ceramics Introduction       substances and processes used in the development and manufacture of ceramic materials that exhibit special properties.       As is pointed out in the article ceramic composition and properties, ceramics are… …   Universalium

  • Advanced Materials — Infobox Journal discipline = Materials Science abbreviation = Adv. Mater. website = http://www.advmat.de publisher = Wiley VCH country = Germany history = 1989 to present ISSN = 1521 4095Advanced Materials is a peer reviewed materials science… …   Wikipedia

  • automotive ceramics — Introduction       advanced ceramic materials that are made into components for automobiles. Examples include spark plug insulators, catalysts and catalyst supports for emission control devices, and sensors of various kinds. This article briefly… …   Universalium

  • nuclear ceramics — Introduction       ceramic materials employed in the generation of nuclear power (nuclear energy) and in the disposal of radioactive nuclear wastes.       In their nuclear related functions, ceramics are of major importance. Since the beginning… …   Universalium

  • tribological ceramics — Introduction also called  wear resistant ceramics        ceramic materials that are resistant to friction and wear. They are employed in a variety of industrial and domestic applications, including mineral processing and metallurgy. This article… …   Universalium

  • traditional ceramics — Introduction       ceramic materials that are derived from common, naturally occurring raw materials such as clay minerals and quartz sand. Through industrial processes that have been practiced in some form for centuries, these materials are made …   Universalium

  • Business and Industry Review — ▪ 1999 Introduction Overview        Annual Average Rates of Growth of Manufacturing Output, 1980 97, Table Pattern of Output, 1994 97, Table Index Numbers of Production, Employment, and Productivity in Manufacturing Industries, Table (For Annual… …   Universalium

  • bioceramics — Introduction       ceramic products or components employed in medical and dental applications, mainly as implants and replacements. This article briefly describes the principal ceramic materials and surveys the uses to which they are put in… …   Universalium

  • Electroceramics — While ceramics have traditionally been admired for their mechanical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy… …   Wikipedia

  • CoorsTek — CoorsTek, Inc. Type Private Industry Ceramics, Semiconductors Founded Golden, Colorado, U.S. (1920) Founder(s) Adolph Coors, Sr. Headquarters …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.