Steinmetz, Charles Proteus

Steinmetz, Charles Proteus
orig. Karl August Rudolf Steinmetz

born April 9, 1865, Breslau, Prussia
died Oct. 26, 1923, Schenectady, N.Y., U.S.

German-born U.S. electrical engineer.

Forced to leave Germany because of his socialist activities, he emigrated to the U.S. in 1889 and began working for General Electric Co. in 1893. He taught at Union College from 1902. His experiments led to the law of hysteresis, which deals with power loss in electrical machinery when magnetic action is converted to unusable heat; the constant he calculated (by age 27) has remained a part of electrical engineering vocabulary. In 1893 he developed a simplified symbolic method of calculating alternating-current phenomena. He also studied electrical transients (changes of very short duration in electrical circuits; e.g., lightning); his theory of traveling waves led to development of devices to protect high-power transmission lines from lightning bolts and to the design of a powerful generator. He patented over 200 inventions.

Charles Steinmetz.

Courtesy of Union College, Schenectady, New York

* * *

▪ American engineer
original name  Karl August Rudolf Steinmetz  
born April 9, 1865, Breslau, Prussia
died Oct. 26, 1923, Schenectady, N.Y., U.S.
 German-born American electrical engineer whose ideas on alternating current systems helped inaugurate the electrical era in the United States.

      At birth Steinmetz was afflicted with a physical deformity, hunchback, and as a youth he showed an unusual capability in mathematics, physics, and classical literature. On graduating from the gymnasium with honours, he entered the University of Breslau in 1883. There he joined a student socialist club, which was banned by the government after becoming affiliated with the German Social Democrats. When some of his fellow party members were arrested, Steinmetz took over the editorship of the party newspaper, “The People's Voice.” One of the articles he wrote was considered inflammatory; the police began a crackdown on the paper, and Steinmetz had to flee Breslau (1888). After a short stay in Zürich he immigrated to the United States in 1889, traveling by steerage. He soon obtained a job with a small electrical firm owned by Rudolf Eickemeyer in Yonkers, N.Y. At about the same time, Steinmetz Americanized his first name to Charles and substituted Proteus, a university nickname, for his two middle names.

      Under the tutelage of his employer, Steinmetz became increasingly absorbed in the practical aspects of electrical engineering. He established a small laboratory at the factory, where he did much of his scientific research. Steinmetz' experiments on power losses in the magnetic materials used in electrical machinery led to his first important work, the law of hysteresis. This law deals with the power loss that occurs in all electrical devices when magnetic action is converted to unusable heat. Until that time the power losses in motors, generators, transformers, and other electrically powered machines could be known only after they were built. Once Steinmetz had found the law governing hysteresis loss, engineers could calculate and minimize losses of electric power due to magnetism in their designs before starting the construction of such machines.

      In 1892 Steinmetz gave two papers before the American Institute of Electrical Engineers on his new law concerning hysteresis loss. His work was immediately recognized as a classic by the few who understood it, and the constant he calculated for this loss has remained a part of electrical engineering vocabulary. Thus, Steinmetz' reputation was assured at the age of 27.

      His second contribution was a practical method for making calculations concerning alternating current circuits. This method was an example of using mathematical aids for engineering the design of machinery and power lines, so that the performance of the electrical system could be predicted in advance without the necessity of going through the expensive and uncertain process of building the system first and then testing it for its efficiency. Steinmetz developed a symbolic method of calculating alternating-current phenomena and in so doing simplified an extremely complicated and barely understood field so that the average engineer could work with alternating current. This accomplishment was largely responsible for the rapid progress made in the commercial introduction of alternating-current apparatus.

      Steinmetz' method of calculation was presented to an uncomprehending audience at the International Electrical Congress in 1893. His book Theory and Calculation of Alternating Current Phenomena (coauthored with Ernst J. Berg in 1897) was read and understood by only a very few. The problem that Steinmetz faced was that electrical engineers were not taught enough mathematics to understand his new mathematical treatment of problems using complex numbers. To educate the electrical engineering profession, he published several textbooks, including Engineering Mathematics (1911), and expanded his original 1897 book into three separate volumes. Gradually, through his writing, lecturing, and teaching, his method of calculation with complex numbers was universally adopted in work with alternating currents.

      In 1893 the newly formed General Electric Company purchased Eickemeyer's company, primarily for his patents, but Steinmetz was considered one of its major assets. At General Electric, Steinmetz gained an expanded opportunity for research and implementation of his ideas. He was assigned to the new calculating department, the first job of which was to work on the company's proposal for building the generators at the new Niagara Falls power station. In 1894 the General Electric Company transferred its operations to Schenectady, N.Y., and Steinmetz was made head of the calculating department. He at once began to indoctrinate the engineers with his method of calculating alternating-current circuits.

      Steinmetz' third major scientific achievement was in the study and theory of electrical transients—that is, changes in electrical circuits of very short duration. A prime example of this phenomenon is lightning, and Steinmetz' investigation of lightning phenomena resulted in his theory of traveling waves and opened the way for his development of devices to protect high-power transmission lines from lightning bolts. In the course of this work he also designed a generator that produced a discharge of 10,000 amperes and more than 100,000 volts, equivalent to a power of more than 1,000,000 horsepower for 1/100,000 of a second. This was his last major project at the General Electric Company, where he had become head of the engineering consulting department.

      In his later years Steinmetz also engaged in public affairs to a considerable degree, serving as president of the Board of Education of Schenectady, N.Y., and as president of the city council. He served as president of the American Institute of Electrical Engineers in 1901–02.

Additional Reading
John Winthrop Hammond, Charles Proteus Steinmetz: A Biography (1924), although not definitive, is the best available. See also Ernest Caldecott and Philip L. Alger (eds.), Steinmetz the Philosopher (1965), a compilation of Steinmetz' works with brief comments. Books by Steinmetz include: America and the New Epoch (1916); Engineering Mathematics: A Series of Lectures Delivered at Union College, 3rd ed. (1917); Four Lectures on Relativity and Space (1923); The Future of Electricity (1910); and General Lectures on Electrical Engineering, 5th ed., comp. and ed. by Joseph L. Hayden (1918).

* * *

Universalium. 2010.

Look at other dictionaries:

  • Steinmetz, Charles Proteus — ► (1865 1923) Electrotécnico alemán. Inventó el sistema monocíclico de un triple conductor para corriente alterna. * * * orig. Karl August Rudolf Steinmetz (9 abr. 1865, Breslau, Prusia–26 oct. 1923, Schenectady, N.Y., EE.UU.). Ingeniero… …   Enciclopedia Universal

  • Steinmetz,Charles Proteus — Stein·metz (stīnʹmĕts , shtīnʹ ), Charles Proteus. 1865 1923. German born American electrical engineer and inventor known for his theoretical studies of alternating current, which made possible advancements in electrical generators and motors. *… …   Universalium

  • Charles Proteus Steinmetz — Born Carl August Rudolph Steinmetz April 9, 1865(1865 04 09) Breslau, Province of Silesia, Prussia …   Wikipedia

  • Charles Proteus Steinmetz — Charles P. Steinmetz. Charles Proteus Steinmetz (* 9. April 1865 in Breslau; † 26. Oktober 1923) war ein deutsch amerikanischer Elektroingenieur. Er entwickelte Theorien zum Wechselstrom, die das Wachstum der Stromindustrie ermöglichten …   Deutsch Wikipedia

  • Charles Proteus Steinmetz — Pour les articles homonymes, voir Steinmetz. Charles Proteus Steinmetz Charles Proteus Steinmetz, né Carl August Rudolph Steinmetz le 9 avril …   Wikipédia en Français

  • Charles Proteus Steinmetz — (1865 1923). Su nacionalidad es problemática, aunque las fuentes mas creíbles dicen que nació en Breslau, Silesia, Alemania, lo que actualmente conocemos como Polonia. Su verdadero nombre era Karl August Rudolf Steinmetz, hijo de un empleado… …   Enciclopedia Universal

  • Charles Proteus Steinmetz — (1865 1923). Su nacionalidad es problemática, aunque las fuentes más creíbles dicen que nació en Breslau, Silesia, Alemania, lo que actualmente conocemos como Polonia. Su verdadero nombre era Karl August Rudolf Steinmetz, hijo de un empleado… …   Wikipedia Español

  • Charles Proteus Steinmetz — noun United States electrical engineer and inventor (born in Germany) (1865 1923) • Syn: ↑Steinmetz • Instance Hypernyms: ↑electrical engineer, ↑inventor, ↑discoverer, ↑artificer …   Useful english dictionary

  • IEEE Charles Proteus Steinmetz Award — The IEEE Charles Proteus Steinmetz Award is given to an individual who has made major contributions to the development of standards in the field of electrical and electronics engineering.Recipients* 2006 Steven Mark Halpin * 2005 Wallace S. Read… …   Wikipedia

  • Steinmetz — Steinmetz, Charles Proteus …   Enciclopedia Universal

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.