W particle
either of two types of charged intermediate vector bosons, one having a positive charge and the other a negative charge. Symbols: W+, W-
[1970-75; appar. for weak]

* * *

Electrically charged subatomic particle that transmits the weak force, which governs radioactive decay (see radioactivity) in some atomic nuclei.

The discovery of the W particle in 1983 by teams led by Carlo Rubbia and Simon van der Meer confirmed the electroweak theory, which explains that the electromagnetic force and the weak force are manifestations of the same interaction. The weak force is exchanged via three types of particles, two charged and one neutral. The charged particles are designated W+ and W- according to the sign of their charge, and the neutral particle is the Z particle. The W particle has a mass about 80 times that of the proton, which gives the weak force a very short range.

* * *

      one of two massive electrically charged subatomic particles (subatomic particle) that are thought to transmit the weak force—that is, the force that governs radioactive decay (radioactivity) in certain kinds of atomic nuclei. According to the standard model of particle physics (physics) that describes the fundamental particles and their interactions, the W particles and their electrically neutral partner, the Z particle, are the carrier particles (the gauge bosons (boson)) of the weak force. The discovery of the W and Z particles—also referred to as intermediate vector bosons (intermediate vector boson)—confirmed the electroweak theory, the joint framework describing the electromagnetic (electromagnetism) and weak forces.

      The existence of intermediate vector bosons and their properties were predicted in the late 1960s by the physicists Sheldon Lee Glashow (Glashow, Sheldon Lee), Steven Weinberg (Weinberg, Steven), and Abdus Salam (Salam, Abdus). Their theoretical efforts, now called the electroweak theory, explain that the electromagnetic force (electromagnetism) and the weak force, long considered separate entities, are actually manifestations of the same basic interaction. Just as the electromagnetic force is transmitted by means of carrier particles known as photons (photon), the weak force is exchanged via three types of intermediate vector bosons. Two of these bosons bear either a positive or a negative electric charge and are designated W+ and W, respectively. The third type, called Z0, is electrically neutral. Unlike photons, each intermediate vector boson has a large mass, and this characteristic is responsible for the extremely short range of the weak force, whose influence is confined to a distance of only about 10−17 metre. (As established by quantum mechanics, the range of any given force tends to be inversely proportional to the mass of the particle transmitting it.)

      In low-energy processes such as radioactive beta decay, the heavy W particles can be exchanged only because the uncertainty principle in quantum mechanics allows fluctuations in mass-energy over sufficiently short timescales. Such W particles can never be observed directly. However, detectable W particles can be produced in particle-accelerator (particle accelerator) experiments involving collisions between subatomic particles, provided that the collision energy is high enough. A W particle of this kind then decays into a charged lepton (e.g., electron, muon, or tau) and an associated neutrino or into a quark and an antiquark of different type (or “ flavour”) but with a total charge of +1 or −1.

      In 1983 two experiments at the European Organization for Nuclear Research ( CERN) detected characteristics closely approximating those predicted for the formation and decay of W and Z particles. Their findings constituted the first direct evidence of weak bosons and provided strong support for the electroweak theory. The two teams observed numerous clear-cut instances of weak bosons in proton- antiproton collision experiments that were carried out in a 540-gigaelectron-volt (GeV; 109 eV (electron volt)) colliding-beam storage ring. All of the observed W particles had a mass of about 81 GeV, or approximately 80 times the mass of the proton, as had been predicted by the electroweak theory. The electrically neutral Z particles detected, with a rest mass of 93 GeV, were also consistent with prediction. The CERN physicist Carlo Rubbia (Rubbia, Carlo) and engineer Simon van der Meer (Meer, Simon van der) were awarded the 1984 Nobel Prize for Physics in recognition of their role in the discovery of the W and Z particles.

      Since the early work at CERN, W particles have been generated in much greater numbers in the 1,800-GeV Tevatron proton-antiproton collider at the Fermi National Accelerator Laboratory and in the Large Electron-Positron collider at CERN. These experiments have yielded more-precise measurements of the mass of the W particle, now known to be close to 80.4 GeV.

* * *


Universalium. 2010.

Look at other dictionaries:

  • W particle — n. [< w(eak)] Particle Physics either of the two electrically charged weakons with a mass of 80.3 GeV/c2, which is c. 157,000 times the mass of an electron: see Z PARTICLE …   English World dictionary

  • W particle — W dalelė statusas T sritis fizika atitikmenys: angl. W particle vok. W Teilchen, n rus. W частица, f pranc. particule W, f …   Fizikos terminų žodynas

  • w particle — noun see w IV * * * W particle see W 4 b …   Useful english dictionary

  • W particle — noun Physics a heavy charged elementary particle considered to transmit the weak interaction between other particles. Origin W, the initial letter of weak …   English new terms dictionary

  • W particle — noun Etymology: weak Date: 1963 either of two particles about 80 times heavier than a proton that along with the Z particle are transmitters of the weak force and that can have a positive or negative charge …   New Collegiate Dictionary

  • W particle — n. phs either of two types of charged intermediate vector boson, one positively charged and the other negatively charged Symbols: W+ W− Etymology: 1970–75; appar. for weak …   From formal English to slang

  • W dalelė — statusas T sritis fizika atitikmenys: angl. W particle vok. W Teilchen, n rus. W частица, f pranc. particule W, f …   Fizikos terminų žodynas

  • W-Teilchen — W dalelė statusas T sritis fizika atitikmenys: angl. W particle vok. W Teilchen, n rus. W частица, f pranc. particule W, f …   Fizikos terminų žodynas

  • W-частица — W dalelė statusas T sritis fizika atitikmenys: angl. W particle vok. W Teilchen, n rus. W частица, f pranc. particule W, f …   Fizikos terminų žodynas

  • W+ — phs symb. the positively charged W particle …   From formal English to slang

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”