vibration


vibration
vibrational, adj.vibrationless, adj.
/vuy bray"sheuhn/, n.
1. the act of vibrating.
2. the state of being vibrated.
3. Physics.
a. the oscillating, reciprocating, or other periodic motion of a rigid or elastic body or medium forced from a position or state of equilibrium.
b. the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound.
4. an instance of vibratory motion; oscillation; quiver; tremor.
5. a supernatural emanation, bearing good or ill, that is sensed by or revealed to those attuned to the occult.
6. Often, vibrations. Informal. a general emotional feeling one has from another person or a place, situation, etc.: I usually get good vibrations from him.
[1645-55; 1965-70 for def. 6; < L vibration- (s. of vibratio). See VIBRATE, -ION]

* * *

Periodic back-and-forth motion (see periodic motion) of the particles of an elastic body or medium.

It is usually a result of the displacement of a body from an equilibrium condition, followed by the body's response to the forces that tend to restore equilibrium. Free vibrations occur when a system is disturbed but immediately allowed to move without restraint, as when a weight suspended by a spring is pulled down and then released. Forced vibrations occur when a system is continuously driven by an external agency, as when a child's swing is pushed on each downswing. Because all systems are subject to friction, they are also subject to damping. In the example of free vibration, damping would cause the amplitudes of the spring's vibrations to diminish until eventually the system came to rest. See also resonance.

* * *

      periodic back-and-forth motion of the particles of an elastic body or medium, commonly resulting when almost any physical system is displaced from its equilibrium condition and allowed to respond to the forces that tend to restore equilibrium.

      Vibrations fall into two categories: free and forced. Free vibrations occur when the system is disturbed momentarily and then allowed to move without restraint. A classic example is provided by a weight suspended from a spring. In equilibrium, the system has minimum energy and the weight is at rest. If the weight is pulled down and released, the system will respond by vibrating vertically.

      The vibrations of a spring are of a particularly simple kind known as simple harmonic motion (SHM). This occurs whenever the disturbance to the system is countered by a restoring force that is exactly proportional to the degree of disturbance. In this case, the restoring force is the tension or compression in the spring, which (according to Hooke's law) is proportional to the displacement of the spring. In simple harmonic motion, the periodic oscillations are of the mathematical form called sinusoidal.

      Most systems that suffer small disturbances counter them by exerting some form of restoring force. It is frequently a good approximation to suppose that the force is proportional to the disturbance, so that SHM is, in the limiting case of small disturbances, a generic feature of vibrating systems. One characteristic of SHM is that the period of the vibration is independent of its amplitude. Such systems therefore are used in regulating clocks. The oscillation of a pendulum, for instance, approximates SHM if the amplitude is small.

      A universal feature of free vibration is damping. All systems are subject to frictional forces, and these steadily sap the energy of the vibrations, causing the amplitude to diminish, usually exponentially. The motion is therefore never precisely sinusoidal. Thus, a swinging pendulum, left undriven, will eventually return to rest at the equilibrium (minimum-energy) position.

      Forced vibrations occur if a system is continuously driven by an external agency. A simple example is a child's swing that is pushed on each downswing. Of special interest are systems undergoing SHM and driven by sinusoidal forcing. This leads to the important phenomenon of resonance. Resonance occurs when the driving frequency approaches the natural frequency of free vibrations. The result is a rapid take-up of energy by the vibrating system, with an attendant growth of the vibration amplitude. Ultimately, the growth in amplitude is limited by the presence of damping, but the response can, in practice, be very great. It is said that soldiers marching across a bridge can set up resonant vibrations sufficient to destroy the structure. Similar folklore exists about opera singers shattering wine glasses.

      Electric vibrations play an important role in electronics. A circuit containing both inductance and capacitance can support the electrical equivalent of SHM involving sinusoidal current flow. Resonance occurs if the circuit is driven by alternating current that is matched in frequency to that of the free oscillations of the circuit. This is the principle behind tuning (tuning and temperament). For example, a radio receiver contains a circuit, the natural frequency of which can be varied. When the frequency matches that of the radio transmitter, resonance occurs and a large alternating current of that frequency develops in the circuit. In this way, resonating circuits can be used to filter out one frequency from a mixture.

      In musical instruments, the motion of strings, membranes, and air columns consists of a superposition of SHM's; in engineering structures, vibrations are a common, though usually undesirable, feature. In many cases, complicated periodic motions can be understood as the superposition of SHM at many different frequencies.

* * *


Universalium. 2010.

Synonyms:

Look at other dictionaries:

  • Vibration — Vibration …   Deutsch Wörterbuch

  • vibration — [ vibrasjɔ̃ ] n. f. • 1632 phys.; 1510 « lancement d une arme de jet »; lat. vibratio 1 ♦ (fin XVIIe) Cour. Mouvement, état de ce qui vibre; effet qui en résulte (son et ébranlement). ⇒ battement. Vibration de moteur, de machines. « il se fit une …   Encyclopédie Universelle

  • vibration — is the variation with time of the displacement of a body with respect to a specified reference dimension when the displacement is alternately greater and smaller than the reference. forced vibration free vibration periodic vibration random… …   Mechanics glossary

  • Vibration — Vi*bra tion, n. [L. vibratio: cf. F. vibration.] 1. The act of vibrating, or the state of being vibrated, or in vibratory motion; quick motion to and fro; oscillation, as of a pendulum or musical string. [1913 Webster] As a harper lays his open… …   The Collaborative International Dictionary of English

  • Vibration — (v. lat.), 1) zitternde, durch schnell auf einander folgende Oscillationen bedingte Bewegung; 2) so v. w. Oscillation 1); 3) so v. w. Schwingung 3). Vibrationsintensität, Vibrationstheorie, s.u. Licht S. 344 u. Wellenbewegung …   Pierer's Universal-Lexikon

  • Vibration — (lat.), Schwingung (s. d.). Vibrationstheorie, s. Licht, S. 511 …   Meyers Großes Konversations-Lexikon

  • Vibration — (lat.), Schwingung (s.d.); Vibrationsmikroskop, Instrument zur Beobachtung der Schwingungsformen an Körpern; Vibrationstheorie, s.v.w. Undulationstheorie (s. Licht); vibratōrisch, in Schwingungen bestehend; vibrieren, Schwingungen machen; zittern …   Kleines Konversations-Lexikon

  • vibration — фр. [вибрасьо/н], нем. [вибрацио/н], англ. [вайбрэ/йшн] vibrazione ит. [вибрацио/нэ] вибрация …   Словарь иностранных музыкальных терминов

  • vibration — (n.) 1650s, from L. vibrationem (nom. vibratio), from vibratus (see VIBRATE (Cf. vibrate)). Meaning intuitive signal about a person or thing was popular late 1960s, but has been recorded as far back as 1899 …   Etymology dictionary

  • vibration — [n] shaking, quivering beating, fluctuation, judder, oscillation, pulsation, pulse, quake, quiver, resonance, reverberation, shake, shimmy, throb, throbbing, trembling, tremor, vacillation, wave, wavering; concepts 152,748 Ant. stillness …   New thesaurus

  • vibration — VIBRATION. s. f. Terme dogmatique. Mouvement d un poids suspendu, qui estant en branle descrit une portion de cercle. Les vibrations d une pendule sont plus ou moins frequentes, selon que la ligne, ou la verge à laquelle le poids est attaché, est …   Dictionnaire de l'Académie française


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.