quantum field theory

quantum field theory
any theory in which fields are treated by the methods of quantum mechanics; each field can then be regarded as consisting of particles of a particular kind, which may be created and annihilated.

* * *

Theory that brings quantum mechanics and special relativity together to account for subatomic phenomena.

In particular, the interactions of subatomic particles are described in terms of their interactions with fields, such as the electromagnetic field. However, the fields are quantized and represented by particles, such as photons for the electromagnetic field. Quantum electrodynamics is the quantum field theory that describes the interaction of electrically charged particles via electromagnetic fields. Quantum chromodynamics describes the action of the strong force. The electroweak theory, a unified theory of electromagnetic and weak forces, has considerable experimental support, and can likely be extended to include the strong force. Theories that include the gravitational force (see gravitation) are more speculative. See also grand unified theory, unified field theory.

* * *

      body of physical principles combining the elements of quantum mechanics with those of relativity to explain the behaviour of subatomic particles (subatomic particle) and their interactions via a variety of force fields. Two examples of modern quantum field theories are quantum electrodynamics, describing the interaction of electrically charged particles and the electromagnetic force (electromagnetism), and quantum chromodynamics, representing the interactions of quarks (quark) and the strong force. Designed to account for particle-physics (physics) phenomena such as high-energy collisions in which subatomic particles may be created or destroyed, quantum field theories have also found applications in other branches of physics.

      The prototype of quantum field theories is quantum electrodynamics (QED), which provides a comprehensive mathematical framework for predicting and understanding the effects of electromagnetism on electrically charged matter at all energy levels. Electric and magnetic forces are regarded as arising from the emission and absorption of exchange particles called photons (photon). These can be represented as disturbances of electromagnetic fields, much as ripples on a lake are disturbances of the water. Under suitable conditions, photons may become entirely free of charged particles; they are then detectable as light and as other forms of electromagnetic radiation. Similarly, particles such as electrons (electron) are themselves regarded as disturbances of their own quantized fields. Numerical predictions based on QED agree with experimental data to within one part in 10 million in some cases.

      There is a widespread conviction among physicists that other forces in nature—the weak force responsible for radioactive beta decay; the strong force, which binds together the constituents of atomic nuclei; and perhaps also the gravitational force (gravitation)—can be described by theories similar to QED. These theories are known collectively as gauge theories (gauge theory). Each of the forces is mediated by its own set of exchange particles, and differences between the forces are reflected in the properties of these particles. For example, electromagnetic and gravitational forces operate over long distances, and their exchange particles—the well-studied photon and the as-yet-undetected graviton, respectively—have no mass.

      In contrast, the strong and weak forces operate only over distances shorter than the size of an atomic nucleus. Quantum chromodynamics (QCD), the modern quantum field theory describing the effects of the strong force among quarks, predicts the existence of exchange particles called gluons (gluon), which are also massless as with QED but whose interactions occur in a way that essentially confines quarks to bound particles such as the proton and the neutron. The weak force is carried by massive exchange particles—the W (W particle) and Z particles (Z particle)—and is thus limited to an extremely short range, approximately 1 percent of the diameter of a typical atomic nucleus.

      The current theoretical understanding of the fundamental interactions (fundamental interaction) of matter is based on quantum field theories of these forces. Research continues, however, to develop a single unified field theory that encompasses all the forces. In such a unified theory, all the forces would have a common origin and would be related by mathematical symmetries (symmetry). The simplest result would be that all the forces would have identical properties and that a mechanism called spontaneous symmetry breaking would account for the observed differences. A unified theory of electromagnetic and weak forces, the electroweak theory, has been developed and has received considerable experimental support. It is likely that this theory can be extended to include the strong force. There also exist theories that include the gravitational force, but these are more speculative.

* * *

Universalium. 2010.

Look at other dictionaries:

  • Quantum field theory — In quantum field theory (QFT) the forces between particles are mediated by other particles. For instance, the electromagnetic force between two electrons is caused by an exchange of photons. But quantum field theory applies to all fundamental… …   Wikipedia

  • quantum field theory — kvantinė lauko teorija statusas T sritis fizika atitikmenys: angl. quantized field theory; quantum field theory vok. Quantenfeldtheorie, f; Quantentheorie der Wellenfelder, f rus. квантовая теория волновых полей, f; квантовая теория поля, f pranc …   Fizikos terminų žodynas

  • quantum field theory — The overall theory of fundamental particles and their interactions. Each type of particle is represented by appropriate operators which obey certain commutation laws. Particles are the quanta of fields in the same way as photons are the quanta of …   Dictionary of automotive terms

  • quantum field theory — noun the branch of quantum physics that is concerned with the theory of fields; it was motivated by the question of how an atom radiates light as its electrons jump from excited states • Hypernyms: ↑quantum physics • Hyponyms: ↑quantum… …   Useful english dictionary

  • quantum field theory — noun Date: 1948 a theory in physics: the interaction of two separate physical systems (as particles) is attributed to a field that extends from one to the other and is manifested in a particle exchange between the two systems …   New Collegiate Dictionary

  • Quantum field theory in curved spacetime — is an extension of standard quantum field theory to curved spacetime. A general prediction of this theory is that particles can be created by time dependent gravitational fields, or by time independent graviational fields that contain… …   Wikipedia

  • Noncommutative quantum field theory — In mathematical physics, noncommutative quantum field theory (or quantum field theory on noncommutative spacetime) is an application of noncommutative mathematics to the spacetime of quantum field theory that is an outgrowth of noncommutative… …   Wikipedia

  • Topological quantum field theory — A topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants.Although TQFTs were invented by physicists (notably Edward Witten), they are primarily of mathematical… …   Wikipedia

  • Constructive quantum field theory — In mathematical physics, constructive quantum field theory is the field devoted to showing that quantum theory is mathematically compatible with special relativity. This demonstration requires new mathematics, in a sense analogous to Newton… …   Wikipedia

  • History of quantum field theory — The history of quantum field theory starts with its creation by Dirac when he attempted to quantize the electromagnetic field in the late 1920s. Foundations The early development of the field involved Fock, Pauli, Heisenberg, Bethe, Tomonaga,… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.