﻿
a polynomial all of whose terms are of degree 2 in two or more variables, as 5x2 - 2xy + 3y2.
[1855-60]

* * *

Universalium. 2010.

### Look at other dictionaries:

• Quadratic form — In mathematics, a quadratic form is a homogeneous polynomial of degree two in a number of variables. For example, is a quadratic form in the variables x and y. Quadratic forms occupy a central place in various branches of mathematics, including… …   Wikipedia

• quadratic form — noun : a homogeneous polynomial of the second degree x2 + 5xy + y2 is a quadratic form * * * Math. a polynomial all of whose terms are of degree 2 in two or more variables, as 5x2 2xy + 3y2. [1855 60] …   Useful english dictionary

• quadratic form — noun Date: 1853 a homogeneous polynomial (as x2 + 5xy + y2) of the second degree …   New Collegiate Dictionary

• Quadratic form (statistics) — If epsilon is a vector of n random variables, and Lambda is an n dimensional symmetric square matrix, then the scalar quantity epsilon Lambdaepsilon is known as a quadratic form in epsilon. ExpectationIt can be shown that:operatorname{E}left… …   Wikipedia

• Ε-quadratic form — In mathematics, specifically the theory of quadratic forms, an ε quadratic form is a generalization of quadratic forms to skew symmetric settings and to * rings; epsilon = pm 1, accordingly for symmetric or skew symmetric. They are also called (… …   Wikipedia

• Binary quadratic form — In mathematics, a binary quadratic form is a quadratic form in two variables. More concretely, it is a homogeneous polynomial of degree 2 in two variables where a, b, c are the coefficients. Properties of binary quadratic forms depend in an… …   Wikipedia

• Isotropic quadratic form — In mathematics, a quadratic form over a field F is said to be isotropic if there is a non zero vector on which it evaluates to zero. Otherwise the quadratic form is anisotropic. More precisely, if q is a quadratic form on a vector space V over F …   Wikipedia

• Definite quadratic form — In mathematics, a definite quadratic form is a real valued quadratic form over some vector space V that has the same sign (always positive or always negative) for every nonzero vector of V. The definite quadratic forms correspond in one to one… …   Wikipedia

• Hasse invariant of a quadratic form — In mathematics, the Hasse invariant (or Hasse Witt invariant) of a quadratic form Q over a field K takes values in the Brauer group Br( K ).The quadratic form Q may be taken as a diagonal form: Sigma; a i x i 2.Its invariant is then defined as… …   Wikipedia