plasmatic /plaz mat"ik/, plasmic, adj.
/plaz"meuh/, n.
1. Anat., Physiol. the liquid part of blood or lymph, as distinguished from the suspended elements.
2. Cell Biol. cytoplasm.
3. whey.
4. a green, faintly translucent chalcedony.
5. Physics. a highly ionized gas containing an approximately equal number of positive ions and electrons.
Also, plasm /plaz"euhm/ (for defs. 1-3).
[1705-15; < LL < Gk plásma something molded or formed, akin to plássein to form, mold. See PLASTIC]

* * *

Electrically conducting medium in which there are roughly equal numbers of positively and negatively charged particles, produced when the atoms in a gas become ionized (see ionization).

Plasma is sometimes called the fourth state of matter (the first three being solid, liquid, and gas). A plasma is unique in the way it interacts with itself, with electric and magnetic fields, and with its environment. It can be thought of as a collection of ions, electrons, neutral atoms and molecules, and photons in which some atoms are being ionized at the same time as electrons are recombining with other ions to form neutral particles, while photons are continuously being produced and absorbed. It is estimated that more than 99% of the matter in the universe exists in the plasma state.
Liquid part of blood (including dissolved chemicals but not the cells and platelets).

This straw-coloured fluid serves as the blood's transport medium, helps maintain blood pressure, distributes body heat, and maintains the pH balance in the bloodstream and body. More than 90% consists of water, about 7% proteins, and the rest other substances, including waste products of metabolism. Important plasma proteins include albumin, coagulation factors, and globulins, including gamma globulin and a hormone that stimulates erythrocyte formation. Serum is the liquid part of the blood that remains after clotting.

* * *

      the liquid portion of blood. Plasma serves as a transport medium for delivering nutrients to the cells of the various organs of the body and for transporting waste products derived from cellular metabolism to the kidneys, liver, and lungs for excretion. It is also a transport system for blood cells, and it plays a critical role in maintaining normal blood pressure. Plasma helps to distribute heat throughout the body and to maintain homeostasis, or biological stability, including acid-base balance in the blood and body.

      Plasma is derived when all the blood cells—red blood cells (erythrocytes (erythrocyte)), white blood cells (leukocytes (leukocyte)), and platelets (platelet) (thrombocytes)—are separated from whole blood. The remaining straw-coloured fluid is 90–92 percent water, but it contains critical solutes necessary for sustaining health and life. Important constituents include electrolytes such as sodium, potassium, chloride, bicarbonate, magnesium, and calcium. In addition, there are trace amounts of other substances, including amino acids, vitamins, organic acids, pigments, and enzymes. Hormones such as insulin, corticosteroids, and thyroxine are secreted into the blood by the endocrine system. Plasma concentrations of hormones must be carefully regulated for good health. Nitrogenous wastes (e.g., urea and creatinine) transported to the kidney for excretion increase markedly with renal failure.

      Plasma contains 6–8 percent proteins. One critical group is the coagulation proteins and their inhibitors, synthesized primarily in the liver. When blood clotting (bleeding and blood clotting) is activated, fibrinogen circulating in the blood is converted to fibrin, which in turn helps to form a stable blood clot at the site of vascular disruption. Coagulation inhibitor proteins help to prevent abnormal coagulation (hypercoagulability) and to resolve clots after they are formed. When plasma is allowed to clot, fibrinogen converts to fibrin, trapping the cellular elements of blood. The resulting liquid, devoid of cells and fibrinogen, is called serum. Biochemical testing of plasma and serum is an important part of modern clinical diagnosis and treatment monitoring. High or low concentrations of glucose in the plasma or serum help to confirm serious disorders such as diabetes mellitus and hypoglycemia. Substances secreted into the plasma by cancers may indicate an occult malignancy; for instance, an increased concentration of prostate-specific antigen (PSA) in a middle-aged asymptomatic man may indicate undiagnosed prostate cancer.

       serum albumin, another protein synthesized by the liver, constitutes approximately 60 percent of all of the plasma proteins. It is very important in maintaining osmotic pressure in the blood vessels; it is also an important carrier protein for a number of substances, including hormones. Other proteins called alpha and beta globulins (globulin) transport lipids such as cholesterol as well as steroids, sugar, and iron.

      The gamma globulins, or immunoglobulins, are an important class of proteins that are secreted by B lymphocytes (lymphocyte) of the immune system. They include most of the body's supply of protective antibodies (antibody) produced in response to specific viral or bacterial antigens (antigen). Cytokines (cytokine) are proteins synthesized by cells of various organs and by cells found in the immune system and bone marrow in order to maintain normal blood cell formation (hematopoiesis) and regulate inflammation. For example, one cytokine called erythropoietin, synthesized by specialized kidney cells, stimulates bone marrow blood progenitor cells to produce red blood cells. Other cytokines stimulate the production of white blood cells and platelets. Another protein system in the plasma, called complement, is important in mediating appropriate immune and inflammatory responses to a variety of infectious agents.

      The electrolytes and acid-base system found in the plasma are finely regulated. For example, potassium is normally present in plasma in a concentration of only 4 milliequivalents per litre. A slight rise in plasma potassium (to 6–7 milliequivalents per litre) can result in death. Likewise, sodium, chloride, bicarbonate, calcium, and magnesium levels in the plasma must be precisely maintained within a narrow range. Smaller molecules such as sodium, potassium, glucose, and calcium are primarily responsible for the concentration of dissolved particles in the plasma. However, it is the concentration of much larger proteins (especially albumin) on either side of semipermeable membranes such as the endothelial cells lining the capillaries that creates crucial pressure gradients necessary to maintain the correct amount of water within the intravascular compartment and, therefore, to regulate the volume of circulating blood. So, for example, patients who have kidney dysfunction or low plasma protein concentrations (especially low albumin) may develop a migration of water from the vascular space into the tissue spaces, causing edema (swelling) and congestion in the extremities and vital organs, including the lungs.

David H. Yawn

      in mineralogy, semitranslucent, microgranular or microfibrous, semiprecious variety of the silica mineral chalcedony. Its colour, various shades of green, is due to disseminated silicate particles of different kinds—e.g., amphibole or chlorite. Other properties are those of quartz. Plasma often has nodules of gray quartz or red jasper (bloodstone) throughout its mass. It has long been used for carvings and mosaics. Localities are India, China, Madagascar, Germany, Brazil, Australia, and Egypt. See also silicate mineral.

▪ state of matter

      in physics, an electrically conducting medium in which there are roughly equal numbers of positively and negatively charged particles, produced when the atoms in a gas become ionized. It is sometimes referred to as the fourth state of matter, distinct from the solid, liquid, and gaseous states.

      The negative charge is usually carried by electrons, each of which has one unit of negative charge. The positive charge is typically carried by atoms or molecules that are missing those same electrons. In some rare but interesting cases, electrons missing from one type of atom or molecule become attached to another component, resulting in a plasma containing both positive and negative ions. The most extreme case of this type occurs when small but macroscopic dust particles become charged in a state referred to as a dusty plasma. The uniqueness of the plasma state is due to the importance of electric and magnetic forces that act on a plasma in addition to such forces as gravity that affect all forms of matter. Since these electromagnetic forces can act at large distances, a plasma will act collectively much like a fluid even when the particles seldom collide with one another.

      Nearly all the visible matter in the universe exists in the plasma state, occurring predominantly in this form in the Sun and stars and in interplanetary and interstellar space. Auroras, lightning, and welding arcs are also plasmas; plasmas exist in neon and fluorescent tubes, in the crystal structure of metallic solids, and in many other phenomena and objects. The Earth itself is immersed in a tenuous plasma called the solar wind and is surrounded by a dense plasma called the ionosphere.

      A plasma may be produced in the laboratory by heating a gas to an extremely high temperature, which causes such vigorous collisions between its atoms and molecules that electrons are ripped free, yielding the requisite electrons and ions. A similar process occurs inside stars. In space the dominant plasma formation process is photoionization (photo-ionization), wherein photons from sunlight or starlight are absorbed by an existing gas, causing electrons to be emitted. Since the Sun and stars shine continuously, virtually all the matter becomes ionized in such cases, and the plasma is said to be fully ionized. This need not be the case, however, for a plasma may be only partially ionized. A completely ionized hydrogen plasma, consisting solely of electrons and protons (hydrogen nuclei), is the most elementary plasma.

The development of plasma physics
      The modern concept of the plasma state is of recent origin, dating back only to the early 1950s. Its history is interwoven with many disciplines. Three basic fields of study made unique early contributions to the development of plasma physics as a discipline: electric discharges, magnetohydrodynamics (in which a conducting fluid such as mercury is studied), and kinetic theory.

      Interest in electric-discharge phenomena may be traced back to the beginning of the 18th century, with three English physicists—Michael Faraday in the 1830s and Joseph John Thomson and John Sealy Edward Townsend at the turn of the 19th century—laying the foundations of the present understanding of the phenomena. Irving Langmuir (Langmuir, Irving) introduced the term plasma in 1923 while investigating electric discharges. In 1929 he and Lewi Tonks, another physicist working in the United States, used the term to designate those regions of a discharge in which certain periodic variations of the negatively charged electrons could occur. They called these oscillations plasma oscillations (plasma oscillation), their behaviour suggesting that of a jellylike substance. Not until 1952, however, when two other American physicists, David Bohm and David Pines, first considered the collective behaviour of electrons in metals as distinct from that in ionized gases, was the general applicability of the concept of a plasma fully appreciated.

      The collective behaviour of charged particles in magnetic fields and the concept of a conducting fluid are implicit in magnetohydrodynamic studies, the foundations of which were laid in the early and middle 1800s by Faraday and André-Marie Ampère of France. Not until the 1930s, however, when new solar and geophysical phenomena were being discovered, were many of the basic problems of the mutual interaction between ionized gases and magnetic fields considered. In 1942 Hannes Alfvén, a Swedish physicist, introduced the concept of magnetohydrodynamic waves. This contribution, along with his further studies of space plasmas, led to Alfvén's receipt of the Nobel Prize for Physics in 1970.

      These two separate approaches—the study of electric discharges and the study of the behaviour of conducting fluids in magnetic fields—were unified by the introduction of the kinetic theory of the plasma state. This theory states that plasma, like gas, consists of particles in random motion, whose interactions can be through long-range electromagnetic forces as well as via collisions. In 1905 the Dutch physicist Hendrik Antoon Lorentz applied the kinetic equation for atoms (the formulation by the Austrian physicist Ludwig Eduard Boltzmann) to the behaviour of electrons in metals. Various physicists and mathematicians in the 1930s and '40s further developed the plasma kinetic theory to a high degree of sophistication. Since the early 1950s interest has increasingly focused on the plasma state itself. Space exploration, the development of electronic devices, a growing awareness of the importance of magnetic fields in astrophysical phenomena, and the quest for controlled thermonuclear (nuclear fusion) power reactors all have stimulated such interest. Many problems remain unsolved in space plasma physics research, owing to the complexity of the phenomena. For example, descriptions of the solar wind must include not only equations dealing with the effects of gravity, temperature, and pressure as needed in atmospheric science but also the equations of the Scottish physicist James Clerk Maxwell, which are needed to describe the electromagnetic field.

Plasma oscillations and parameters
      Just as a lightweight cork in water will bob up and down about its rest position, any general displacement of light electrons as a group with respect to the positive ions in a plasma leads to the oscillation of the electrons as a whole about an equilibrium state. In the case of the cork, the restoring force is provided by gravity; in plasma oscillations, it is provided by the electric force. These movements are the plasma oscillations that were studied by Langmuir and Tonks. Analogously, just as buoyancy effects guide water waves, plasma oscillations are related to waves in the electron component of the plasma called Langmuir waves. Wavelike phenomena play a critical role in the behaviour of plasmas.

      The time τ required for an oscillation of this type is the most important temporal parameter in a plasma. The main spatial parameter is the Debye length, h, which is the distance traveled by the average thermal electron in time τ/2π. A plasma can be defined in terms of these parameters as a partially or fully ionized gas that satisfies the following criteria: (1) a constituent electron may complete many plasma oscillations before it collides with either an ion or one of the other heavy constituents, (2) inside each sphere with a radius equal to the Debye length, there are many particles, and (3) the plasma itself is much larger than the Debye length in every dimension.

      Another important temporal parameter is the time between collisions (collision) of particles. In any gas, separate collision frequencies are defined for collisions between all different particle types. The total collision frequency for a particular species is the weighted sum of all the separate frequencies. Two basic types of collision may occur: elastic and inelastic. In an elastic collision, the total kinetic energy of all the particles participating in the collision is the same before and after the event. In an inelastic collision, a fraction of the kinetic energy is transferred to the internal energy of the colliding particles. In an atom, for example, the electrons have certain allowed (discrete) energies and are said to be bound. During a collision, a bound electron may be excited—that is, raised from a low to a high energy state. This can occur, however, only by the expenditure of kinetic energy and only if the kinetic energy exceeds the difference between the two energy states. If the energy is sufficient, a bound electron may be excited to such a high level that it becomes a free electron, and the atom is said to be ionized (ionization); the minimum, or threshold, energy required to free an electron is called the ionization energy. Inelastic collisions may also occur with positive ions unless all the electrons have been stripped away. In general, only collisions of electrons and photons (quanta of electromagnetic radiation) with atoms and ions are significant in these inelastic collisions; ionization by a photon is called photoionization.

      A molecule has additional discrete energy states, which may be excited by particle or photon collisions. At sufficiently high energies of interaction, the molecule can dissociate into atoms or into atoms and atomic ions. As in the case of atoms, collision of electrons and photons with molecules may cause ionization, producing molecular ions. In general, the reaction rate for inelastic collisions is similar to that of chemical reactions. At sufficiently high temperatures, the atoms are stripped of all electrons and become bare atomic nuclei. Finally, at temperatures of about 1,000,000 K or greater, nuclear reactions can occur—another form of inelastic collisions. When such reactions lead to the formation of heavier elements, the process is called thermonuclear fusion; mass is transmuted, and kinetic energy is gained instead of lost.

      All sources of energy now existing on the Earth can be traced in one way or another to the nuclear fusion reactions inside the Sun or some long-extinct star. In such energy sources, gravity controls and confines the fusion process. The high temperatures required for the nuclear fusion reactions that take place in a hydrogen, or thermonuclear, bomb are attained by first igniting an atomic bomb, which produces a fission chain reaction. One of the great challenges of humankind is to create these high temperatures in a controlled manner and to harness the energy of nuclear fusion. This is the great practical goal of plasma physics—to produce nuclear fusion on the Earth. Confinement schemes devised by scientists use magnetic fields or the inertia of an implosion to guide and control the hot plasma.

Basic plasma physics

Plasma formation
      Apart from solid-state plasmas, such as those in metallic crystals, plasmas do not usually occur naturally at the surface of the Earth. For laboratory experiments and technological applications, plasmas therefore must be produced artificially. Because the atoms of such alkalies as potassium, sodium, and cesium possess low ionization energies, plasmas may be produced from these by the direct application of heat at temperatures of about 3,000 K. In most gases, however, before any significant degree of ionization is achieved, temperatures in the neighbourhood of 10,000 K are required. A convenient unit for measuring temperature in the study of plasmas is the electron volt (eV), which is the energy gained by an electron in vacuum when it is accelerated across one volt of electric potential. The temperature, W, measured in electron volts is given by W = T/12,000 when T is expressed in kelvins. The temperatures required for self-ionization thus range from 2.5 to 8 electron volts, since such values are typical of the energy needed to remove one electron from an atom or molecule.

      Because all substances melt at temperatures far below that level, no container yet built can withstand an external application of the heat necessary to form a plasma; therefore, any heating must be supplied internally. One technique is to apply an electric field to the gas to accelerate and scatter any free electrons, thereby heating the plasma. This type of ohmic heating is similar to the method in which free electrons in the heating element of an electric oven heat the coil. Because of their small energy loss in elastic collisions, electrons can be raised to much higher temperatures than other particles. For plasma formation a sufficiently high electric field must be applied, its exact value depending on geometry and the gas pressure. The electric field may be set up via electrodes or by transformer action, in which the electric field is induced by a changing magnetic field. Laboratory temperatures of about 10,000,000 K, or 8 kiloelectron volts (keV), with electron densities of about 1019 per cubic metre have been achieved by the transformer method. The temperature is eventually limited by energy losses to the outside environment. Extremely high temperatures, but relatively low-density plasmas, have been produced by the separate injection of ions and electrons into a mirror system (a plasma device using a particular arrangement of magnetic fields for containment). Other methods have used the high temperatures that develop behind a wave that is moving much faster than sound to produce what is called a shock (shock wave) front; lasers have also been employed.

      Natural plasma heating and ionization occur in analogous ways. In a lightning-induced (lightning) plasma, the electric current carried by the stroke heats the atmosphere in the same manner as in the ohmic heating technique described above. In solar and stellar plasmas the heating is internal and caused by nuclear fusion reactions. In the solar corona, the heating occurs because of waves that propagate from the surface into the Sun's (Sun) atmosphere, heating the plasma much like shock-wave heating in laboratory plasmas. In the ionosphere, ionization is accomplished not through heating of the plasma but rather by the flux of energetic photons from the Sun. Far-ultraviolet rays and X rays from the Sun have enough energy to ionize atoms in the Earth's atmosphere. Some of the energy also goes into heating the gas, with the result that the upper atmosphere, called the thermosphere, is quite hot. These processes protect the Earth from energetic photons much as the ozone layer protects terrestrial life-forms from lower-energy ultraviolet light. The typical temperature 300 kilometres above the Earth's surface is 1,200 K, or about 0.1 eV. Although it is quite warm compared with the surface of the Earth, this temperature is too low to create self-ionization. When the Sun sets with respect to the ionosphere, the source of ionization ceases, and the lower portion of the ionosphere reverts to its nonplasma state. Some ions, in particular singly charged oxygen (O+), live long enough that some plasma remains until the next sunrise. In the case of an aurora, a plasma is created in the nighttime or daytime atmosphere when beams of electrons are accelerated to hundreds or thousands of electron volts and smash into the atmosphere.

Methods of describing plasma phenomena
      The behaviour of a plasma may be described at different levels. If collisions are relatively infrequent, it is useful to consider the motions of individual particles. In most plasmas of interest, a magnetic field exerts a force on a charged particle only if the particle is moving, the force being at right angles to both the direction of the field and the direction of particle motion. In a uniform magnetic field (B), a charged particle gyrates about a line of force. The centre of the orbit is called the guiding centre. The particle may also have a component of velocity parallel to the magnetic field and so traces out a helix in a uniform magnetic field. If a uniform electric field (E) is applied at right angles to the direction of the magnetic field, the guiding centre drifts with a uniform velocity of magnitude equal to the ratio of the electric to the magnetic field (E/B), at right angles to both the electric and magnetic fields. A particle starting from rest in such fields follows the same cycloidal path a dot on the rim of a rolling wheel follows. Although the “wheel” radius and its sense of rotation vary for different particles, the guiding centre moves at the same E/B velocity, independent of the particle's charge and mass. Should the electric field change with time, the problem would become even more complex. If, however, such an alternating electric field varies at the same frequency as the cyclotron frequency (i.e., the rate of gyration), the guiding centre will remain stationary, and the particle will be forced to travel in an ever-expanding orbit. This phenomenon is called cyclotron resonance and is the basis of the cyclotron particle accelerator.

      The motion of a particle about its guiding centre constitutes a circular current. As such, the motion produces a dipole magnetic field not unlike that produced by a simple bar magnet. Thus, a moving charge not only interacts with magnetic fields but also produces them. The direction of the magnetic field produced by a moving particle, however, depends both on whether the particle is positively or negatively charged and on the direction of its motion. If the motion of the charged particles is completely random, the net associated magnetic field is zero. On the other hand, if charges of different sign have an average relative velocity (i.e., if an electric current flows), then a net magnetic field over and above any externally applied field exists. The magnetic interaction between charged particles is therefore of a collective, rather than of an individual, particle nature.

      At a higher level of description than that of the single particle, kinetic equations of the Boltzmann type are used. Such equations essentially describe the behaviour of those particles about a point in a small-volume element, the particle velocities lying within a small range about a given value. The interactions with all other velocity groups, volume elements, and any externally applied electric and magnetic fields are taken into account. In many cases, equations of a fluid type may be derived from the kinetic equations; they express the conservation of mass, momentum, and energy per unit volume, with one such set of equations for each particle type.

Determination of plasma variables
      The basic variables useful in the study of plasma are number densities, temperatures, electric and magnetic field strengths, and particle velocities. In the laboratory and in space, both electrostatic (charged) and magnetic types of sensory devices called probes help determine the magnitudes of such variables. With the electrostatic probe, ion densities, electron and ion temperatures, and electrostatic potential differences can be determined. Small search coils and other types of magnetic probes yield values for the magnetic field; and from Maxwell's electromagnetic equations the current and charge densities and the induced component of the electric field may be found. Interplanetary spacecraft have carried such probes to nearly every planet in the solar system, revealing to scientists such plasma phenomena as lightning on Jupiter and the sounds of Saturn's rings and radiation belts. In the early 1990s, signals were being relayed to the Earth from several spacecraft approaching the edge of the plasma boundary to the solar system, the heliopause.

      In the laboratory the absorption, scattering, and excitation of neutral and high-energy ion beams are helpful in determining electron temperatures and densities; in general, the refraction, reflection, absorption, scattering, and interference of electromagnetic waves also provide ways to determine these same variables. This technique has also been employed to remotely measure the properties of the plasmas in the near-space regions of the Earth using the incoherent scatter radar method. The largest single antenna is at the National Astronomy and Ionosphere Center (Arecibo Observatory) at Arecibo in Puerto Rico. It has a circumference of 305 metres and was completed in 1963. It is still used to probe space plasmas to distances of 3,000 kilometres. The method works by bouncing radio waves from small irregularities in the electron gas that occur owing to random thermal motions of the particles. The returning signal is shifted slightly from the transmitted one—because of the Doppler-shift effect (Doppler effect)—and the velocity of the plasma can be determined in a manner similar to the way in which the police detect a speeding car. Using this method, the wind speed in space can be found, along with the temperature, density, electric field, and even the types of ions present. In geospace the appropriate radar frequencies are in the range of 50 to 1,000 megahertz (MHz), while in the laboratory, where the plasma densities and plasma frequencies are higher, microwaves and lasers must be used.

      Aside from the above methods, much can be learned from the radiation generated and emitted by the plasma itself; in fact, this is the only means of studying cosmic plasma beyond the solar system. The various spectroscopic techniques covering the entire continuous radiation spectrum determine temperatures and identify such nonthermal sources as those pulses producing synchrotron radiations.

Waves (wave motion) in plasmas
      The waves most familiar to people are the buoyancy waves that propagate on the surfaces of lakes and oceans and break onto the world's beaches. Equally familiar, although not necessarily recognized as waves, are the disturbances in the atmosphere that create what is referred to as the weather. Wave phenomena are particularly important in the behaviour of plasmas. In fact, one of the three criteria for the existence of a plasma is that the particle-particle collision rate be less than the plasma-oscillation frequency. This in turn implies that the collective interactions that control the plasma gas depend on the electric and magnetic field effects as much as, or more so than, simple collisions. Since waves are able to propagate, the possibility exists for force fields to act at large distances from the point where they originated.

      Ordinary fluids can support the propagation of sound (acoustic) waves, which involve pressure, temperature, and velocity variations. Electromagnetic waves can propagate even in a vacuum but are slowed down in most cases by the interaction of the electric fields in the waves with the charged particles bound in the atoms or molecules of the gas. Although it is important for a complete description of electromagnetic waves, such an interaction is not very strong. In a plasma, however, the particles react in concert with any electromagnetic field (e.g., as in an electromagnetic wave) as well as with any pressure or velocity field (e.g., as in a sound wave). In fact, in a plasma sound wave the electrons and ions become slightly separated owing to their difference in mass, and an electric field builds up to bring them back together. The result is called an ion acoustic wave. This is just one of the many types of waves that can exist in a plasma. The brief discussion that follows touches on the main types in order of increasing wave-oscillation frequency.

Low-frequency waves
      At the lowest frequency are Alfvén waves, which require the presence of a magnetic field to exist. In fact, except for ion acoustic waves, the existence of a background magnetic field is required for any wave with a frequency less than the plasma frequency to occur in a plasma. Most natural plasmas are threaded by a magnetic field, and laboratory plasmas often use a magnetic field for confinement, so this requirement is usually met, and all types of waves can occur.

      Alfvén waves are analogous to the waves that occur on the stretched string of a guitar. In this case, the string represents a magnetic field line. When a small magnetic field disturbance takes place, the field is bent slightly, and the disturbance propagates in the direction of the magnetic field. Since any changing magnetic field creates an electric field, an electromagnetic wave results. Such waves are the slowest and have the lowest frequencies of any known electromagnetic waves. For example, the solar wind streams out from the Sun with a speed greater than either electromagnetic (Alfvén) or sound waves. This means that, when the solar wind hits the Earth's outermost magnetic field lines, a shock wave results to “inform” the incoming plasma that an obstacle exists, much like the shock wave associated with a supersonic airplane. The shock wave travels toward the Sun at the same speed but in the opposite direction as the solar wind, so it appears to stand still with respect to the Earth. Because there are almost no particle-particle collisions, this type of collisionless shock wave is of great interest to space plasma physicists who postulate that similar shocks occur around supernovas and in other astrophysical plasmas. On the Earth's side of the shock wave, the heated and slowed solar wind interacts with the Earth's atmosphere via Alfvén waves propagating along the magnetic field lines.

      The turbulent surface of the Sun radiates large-amplitude Alfvén waves, which are thought to be responsible for heating the corona to 1,000,000 K. Such waves can also produce fluctuations in the solar wind, and, as they propagate through it to the Earth, they seem to control the occurrence of magnetic storms and auroras that are capable of disrupting communication systems and power grids on the planet.

      Two fundamental types of wave motion can occur: longitudinal (longitudinal wave), like a sound or ion acoustic wave, in which particle oscillation is in a direction parallel to the direction of wave propagation; and transverse (transverse wave), like a surface water wave, in which particle oscillation is in a plane perpendicular to the direction of wave propagation. In all cases, a wave may be characterized by a speed of propagation (u), a wavelength (λ), and a frequency (ν) related by an expression in which the velocity is equal to the product of the wavelength and frequency, namely, u = λν. The Alfvén wave is a transverse wave and propagates with a velocity that depends on the particle density and the magnetic field strength. The velocity is equal to the magnetic flux density (B) divided by the square root of the mass density (ρ) times the permeability of free space (μ0)—that is to say, B/√μ0ρ. The ion acoustic wave is a longitudinal wave and also propagates parallel to the magnetic field at a speed roughly equal to the average thermal velocity of the ions. Perpendicular to the magnetic field a different type of longitudinal wave called a magnetosonic wave can occur.

Higher frequency waves
      In these waves the plasma behaves as a whole, and the velocity is independent of wave frequency. At higher frequencies, however, the separate behaviour of ions and electrons causes the wave velocities to vary with direction and frequency. The Alfvén wave splits into two components, referred to as the fast and slow Alfvén waves, which propagate at different frequency-dependent speeds. At still higher frequencies these two waves (called the electron cyclotron and ion cyclotron waves, respectively) cause electron and cyclotron resonances (synchronization) at the appropriate resonance frequencies. Beyond these resonances, transverse wave propagation does not occur at all until frequencies comparable to and above the plasma frequency are reached.

      At frequencies between the ion and electron gyrofrequencies lies a wave mode called a whistler. This name comes from the study of plasma waves generated by lightning. When early researchers listened to natural radio waves by attaching an antenna to an audio amplifier, they heard a strange whistling sound. The whistle occurs when the electrical signal from lightning in one hemisphere travels along the Earth's magnetic field lines to the other hemisphere. The trip is so long that some waves (those at higher frequencies) arrive first, resulting in the generation of a whistlelike sound. These natural waves were used to probe the region of space around the Earth before spacecraft became available. Such a frequency-dependent wave velocity is called wave dispersion because the various frequencies disperse with distance.

      The speed of an ion acoustic wave also becomes dispersive at high frequencies, and a resonance similar to electron plasma oscillations occurs at a frequency determined by electrostatic oscillations of the ions. Beyond this frequency no sonic wave propagates parallel to a magnetic field until the frequency reaches the plasma frequency, above which electroacoustic waves occur. The wavelength of these waves at the critical frequency (ωp) is infinite, the electron behaviour at this frequency taking the form of the plasma oscillations of Langmuir and Tonks. Even without particle collisions, waves shorter than the Debye length are heavily damped—i.e., their amplitude decreases rapidly with time. This phenomenon, called Landau damping, arises because some electrons have the same velocity as the wave. As they move with the wave, they are accelerated much like a surfer on a water wave and thus extract energy from the wave, damping it in the process.

      Magnetic fields (magnetic field) are used to contain high-density, high-temperature plasmas because such fields exert pressures and tensile forces on the plasma. An equilibrium configuration is reached only when at all points in the plasma these pressures and tensions exactly balance the pressure from the motion of the particles. A well-known example of this is the pinch effect observed in specially designed equipment. If an external electric current is imposed on a cylindrically shaped plasma and flows parallel to the plasma axis, the magnetic forces act inward and cause the plasma to constrict, or pinch. An equilibrium condition is reached in which the temperature is proportional to the square of the electric current. This result suggests that any temperature may be achieved by making the electric current sufficiently large, the heating resulting from currents and compression. In practice, however, since no plasma can be infinitely long, serious energy losses occur at the ends of the cylinder; also, major instabilities develop in such a simple configuration. Suppression of such instabilities has been one of the major efforts in laboratory plasma physics and in the quest to control the nuclear fusion reaction.

      A useful way of describing the confinement of a plasma by a magnetic field is by measuring containment time (τc), or the average time for a charged particle to diffuse out of the plasma; this time is different for each type of configuration. Various types of instabilities can occur in plasma. These lead to a loss of plasma and a catastrophic decrease in containment time. The most important of these is called magnetohydrodynamic instability. Although an equilibrium state may exist, it may not correspond to the lowest possible energy. The plasma, therefore, seeks a state of lower potential energy, just as a ball at rest on top of a hill (representing an equilibrium state) rolls down to the bottom if perturbed; the lower energy state of the plasma corresponds to a ball at the bottom of a valley. In seeking the lower energy state, turbulence develops, leading to enhanced diffusion, increased electrical resistivity, and large heat losses. In toroidal geometry, circular plasma currents must be kept below a critical value called the Kruskal-Shafranov limit, otherwise a particularly violent instability consisting of a series of kinks may occur. Although a completely stable system appears to be virtually impossible, considerable progress has been made in devising systems that eliminate the major instabilities. Temperatures on the order of 10,000,000 K at densities of 1019 particles per cubic metre and containment times as high as 1/50 of a second have been achieved.

Applications of plasmas
      The most important practical applications of plasmas lie in the future, largely in the field of power production. The major method of generating electric power has been to use heat sources to convert water to steam, which drives turbogenerators. Such heat sources depend on the combustion of fossil fuels, such as coal, oil, and natural gas, and fission processes in nuclear reactors. A potential source of heat might be supplied by a fusion reactor, with a basic element of deuterium-tritium plasma; nuclear fusion collisions between those isotopes of hydrogen would release large amounts of energy to the kinetic energy of the reaction products (the neutrons and the nuclei of hydrogen and helium atoms). By absorbing those products in a surrounding medium, a powerful heat source could be created. To realize a net power output from such a generating station—allowing for plasma radiation and particle losses and for the somewhat inefficient conversion of heat to electricity—plasma temperatures of about 100,000,000 K and a product of particle density times containment time of about 1020 seconds per cubic metre are necessary. For example, at a density of 1020 particles per metre cubed, the containment time must be one second. Such figures are yet to be reached, although there has been much progress.

      In general, there are two basic methods of eliminating or minimizing end losses from an artificially created plasma: the production of toroidal plasmas and the use of magnetic mirrors (see nuclear fusion). A toroidal plasma is essentially one in which a plasma of cylindrical cross section is bent in a circle so as to close on itself. For such plasmas to be in equilibrium and stable, however, special magnetic (magnetic mirror) fields are required, the largest component of which is a circular field parallel to the axis of the plasma. In addition, a number of turbulent plasma processes must be controlled to keep the system stable. In 1991 a machine called the JET (Joint European Torus) was able to generate 1.7 million watts of fusion power for almost 2 seconds after researchers injected titrium into the JET's magnetically confined plasma. It was the first successful controlled production of fusion power in such a confined medium.

      Besides generating power, a fusion reactor might desalinate (desalination) seawater. Approximately two-thirds of the world's land surface is uninhabited, with one-half of this area being arid. The use of both giant fission and fusion reactors in the large-scale evaporation of seawater could make irrigation of such areas economically feasible. Another possibility in power production is the elimination of the heat–steam–mechanical energy chain. One suggestion depends on the dynamo effect. If a plasma moves perpendicular to a magnetic field, an electromotive force, according to Faraday's law, is generated in a direction perpendicular to both the direction of flow of the plasma and the magnetic field. This dynamo effect can drive a current in an external circuit connected to electrodes in the plasma, and thus electric power may be produced without the need for steam-driven rotating machinery. This process is referred to as magnetohydrodynamic (MHD) power generation (magnetohydrodynamic power generator) and has been proposed as a method of extracting power from certain types of fission reactors. Such a generator powers the auroras as the Earth's magnetic field lines tap electrical current from the MHD generator in the solar wind.

      The inverse of the dynamo effect, called the motor effect, may be used to accelerate plasma. By pulsing cusp-shaped magnetic fields in a plasma, for example, it is possible to achieve thrusts proportional to the square of the magnetic field. Motors based on such a technique have been proposed for the propulsion of craft (spacecraft) in deep space. They have the advantage of being capable of achieving large exhaust velocities, thus minimizing the amount of fuel carried.

      A practical application of plasma involves the glow discharge that occurs between two electrodes at pressures of one-thousandth of an atmosphere or thereabouts. Such glow discharges are responsible for the light given off by neon tubes and such other light sources as fluorescent lamps (fluorescent lamp), which operate by virtue of the plasmas they produce in electric discharge. The degree of ionization in such plasmas is usually low, but electron densities of 1016 to 1018 electrons per cubic metre can be achieved with an electron temperature of 100,000 K. The electrons responsible for current flow are produced by ionization in a region near the cathode, with most of the potential difference between the two electrodes occurring there. This region does not contain a plasma, but the region between it and the anode (i.e., the positive electrode) does.

      Other applications of the glow discharge include electronic switching devices (electric switch); it and similar plasmas produced by radio-frequency techniques can be used to provide ions for particle accelerators (particle accelerator) and act as generators of laser beams. As the current is increased through a glow discharge, a stage is reached when the energy generated at the cathode is sufficient to provide all the conduction electrons directly from the cathode surface, rather than from gas between the electrodes. Under this condition the large cathode potential difference disappears, and the plasma column contracts. This new state of electric (electric arc) discharge is called an arc. Compared with the glow discharge, it is a high-density plasma and will operate over a large range of pressures. Arcs are used as light sources for welding, in electronic switching, for rectification of alternating currents, and in high-temperature chemistry. Running an arc between concentric electrodes and injecting gas into such a region causes a hot, high-density plasma mixture called a plasma jet to be ejected. It has many chemical and metallurgical applications.

Natural plasmas

Extraterrestrial forms
      It has been suggested that the universe originated as a violent explosion (big-bang model) about 10 billion years ago and initially consisted of a fireball of completely ionized hydrogen plasma. Irrespective of the truth of this, there is little matter in the universe now that does not exist in the plasma state. The observed stars are composed of plasmas, as are interstellar and interplanetary media and the outer atmospheres of planets. Scientific knowledge of the universe has come primarily from studies of electromagnetic radiation emitted by plasmas and transmitted through them and, since the 1960s, from space probes within the solar system.

      In a star the plasma is bound together by gravitational forces, and the enormous energy it emits originates in thermonuclear fusion reactions within the interior. Heat is transferred from the interior to the exterior by radiation in the outer layers, where convection is of greater importance. In the vicinity of a hot star, the interstellar medium consists almost entirely of completely ionized hydrogen, ionized by the star's ultraviolet radiation. Such regions are referred to as H II regions (H II region). The greater proportion by far of interstellar medium, however, exists in the form of neutral hydrogen clouds referred to as H I regions (hydrogen cloud). Because the heavy atoms in such clouds are ionized by ultraviolet radiation (or photoionized), they also are considered to be plasmas, although the degree of ionization is probably only one part in 10,000. Other components of the interstellar medium are grains of dust and cosmic rays, the latter consisting of very high-energy atomic nuclei completely stripped of electrons. The almost isotropic velocity distribution of the cosmic rays may stem from interactions with waves of the background plasma.

      Throughout this universe of plasma there are magnetic fields (magnetic field). In interstellar space magnetic fields are about 5 × 10-6 gauss (a unit of magnetic field strength) and in interplanetary space 5 × 10-5 gauss, whereas in intergalactic space they could be as low as 10-9 gauss. These values are exceedingly small compared with the Earth's surface field (geomagnetic field) of about 5 × 10−1 gauss. Although small in an absolute sense, these fields are nevertheless gigantic, considering the scales involved. For example, to simulate interstellar phenomena in the laboratory, fields of about 1015 gauss would be necessary. Thus, these fields play a major role in nearly all astrophysical phenomena. On the Sun the average surface field is in the vicinity of 1 to 2 gauss, but magnetic disturbances arise, such as sunspots (sunspot), in which fields of between 10 and 1,000 gauss occur. Many other stars are also known to have magnetic fields. Field strengths of 10-3 gauss are associated with various extragalactic nebulae from which synchrotron radiation has been observed.

Solar-terrestrial forms
Regions of the Sun
 The visible region of the Sun is the photosphere (see Table—>), with its radiation being about the same as the continuum radiation from a 5,800 K blackbody. Lying above the photosphere is the chromosphere, which is observed by the emission of line radiation from various atoms and ions. Outside the chromosphere, the corona expands into the ever-blowing solar wind (see below), which on passing through the planetary system eventually encounters the interstellar medium. The corona can be seen in spectacular fashion when the Moon eclipses the bright photosphere. During the times in which sunspots (sunspot) are greatest in number (called the sunspot maximum), the corona is very extended and the solar wind is fierce. Sunspot activity waxes and wanes with roughly an 11-year cycle. During the mid-1600s and early 1700s, sunspots virtually disappeared for a period known as the Maunder minimum. This time coincided with the Little Ice Age in Europe, and much conjecture has arisen about the possible effect of sunspots on climate. Periodic variations similar to that of sunspots have been observed in tree rings and lake-bed sedimentation. If real, such an effect is important because it implies that the Earth's climate is fragile.

      In 1958 the American astrophysicist Eugene Parker showed that the equations describing the flow of plasma in the Sun's gravitational field had one solution that allowed the gas to become supersonic and to escape the Sun's pull. The solution was much like the description of a rocket nozzle in which the constriction in the flow is analogous to the effect of gravity. Parker predicted the Sun's atmosphere would behave just as this particular solar-wind solution predicts rather than according to the solar-breeze solutions suggested by others. The interplanetary satellite probes of the 1960s proved his solution to be correct.

Interaction of the solar wind and the magnetosphere
      The solar wind is a collisionless plasma made up primarily of electrons and protons and carries an outflow of matter moving at supersonic and super-Alfvénic speed. The wind takes with it an extension of the Sun's magnetic field, which is frozen into the highly conducting fluid. In the region of the Earth, the wind has an average speed of 400 kilometres per second; and, when it encounters the planet's magnetic field, a shock front develops, the pressures acting to compress the field on the side toward the Sun and elongate it on the nightside (in the Earth's lee away from the Sun). The Earth's magnetic field is therefore confined to a cavity called the magnetosphere, into which the direct entry of the solar wind is prohibited. This cavity extends for about 10 Earth radii on the Sun's side and about 1,000 Earth radii on the nightside.

      Inside this vast magnetic field a region of circulating plasma is driven by the transfer of momentum from the solar wind. Plasma flows parallel to the solar wind on the edges of this region and back toward the Earth in its interior. The resulting system acts as a secondary magnetohydrodynamic generator (magnetohydrodynamic power generator) (the primary one being the solar wind itself). Both generators produce potential on the order of 100,000 volts. The solar-wind potential appears across the polar caps of the Earth, while the magnetospheric potential appears across the auroral oval. The latter is the region of the Earth where energetic electrons and ions precipitate into the planet's atmosphere, creating a spectacular light show. This particle flux is energetic enough to act as a new source of plasmas even when the Sun is no longer shining. The auroral oval becomes a good conductor; and large electric currents flow along it, driven by the potential difference across the system. These currents commonly are on the order of 1,000,000 amperes.

      The plasma inside the magnetosphere is extremely hot (1–10 million K) and very tenuous (1–10 particles per cubic centimetre). The particles are heated by a number of interesting plasma effects, the most curious of which is the auroral acceleration process itself. A particle accelerator that may be the prototype for cosmic accelerators throughout the universe is located roughly one Earth radius above the auroral oval and linked to it by all-important magnetic field lines. In this region the auroral electrons are boosted by a potential difference on the order of three to six kilovolts, most likely created by an electric field parallel to the magnetic field lines and directed away from the Earth. Such a field is difficult to explain because magnetic field lines usually act like nearly perfect conductors. The auroras occur on magnetic field lines that—if it were not for the distortion of the Earth's dipole field—would cross the equatorial plane at a distance of 6–10 Earth radii.

      Closer to the Earth, within about 4 Earth radii, the planet wrests control of the system away from the solar wind. Inside this region the plasma rotates with the Earth, just as its atmosphere rotates with it. This system can also be thought of as a magnetohydrodynamic generator in which the rotation of the atmosphere and the ionospheric plasma in it create an electric field that puts the inner magnetosphere in rotation about the Earth's axis. Since this inner region is in contact with the dayside of the Earth where the Sun creates copious amounts of plasma in the ionosphere, the inner zone fills up with dense, cool plasma to form the plasmasphere. On a planet such as Jupiter, which has both a larger magnetic field and a higher rotation rate than the Earth, planetary control extends much farther from the surface.

The ionosphere and upper atmosphere
      At altitudes below about 2,000 kilometres, the plasma is referred to as the ionosphere. Thousands of rocket probes have helped chart the vertical structure of this region of the atmosphere, and numerous satellites have provided latitudinal and longitudinal information. The ionosphere was discovered in the early 1900s when radio waves were found to propagate “over the horizon.” If radio waves have frequencies near or below the plasma frequency, they cannot propagate throughout the plasma of the ionosphere and thus do not escape into space; they are instead either reflected or absorbed. At night the absorption is low since little plasma exists at the height of roughly 100 kilometres where absorption is greatest. Thus, the ionosphere acts as an effective mirror, as does the Earth's surface, and waves can be reflected around the entire planet much as in a waveguide. A great communications revolution was initiated by the wireless, which relied on radio waves to transmit audio signals. Development continues to this day with satellite systems that must propagate through the ionospheric plasma. In this case, the wave frequency must be higher than the highest plasma frequency in the ionosphere so that the waves will not be reflected away from the Earth.

      The dominant ion in the upper atmosphere is atomic oxygen, while below about 200 kilometres molecular oxygen and nitric oxide are most prevalent. Meteor showers also provide large numbers of metallic atoms of elements such as iron, silicon, and magnesium, which become ionized in sunlight and last for long periods of time. These form vast ion clouds, which are responsible for much of the fading in and out of radio stations at night.

The lower atmosphere and surface of the Earth
      A more normal type of cloud forms at the base of the Earth's plasma blanket in the summer polar mesosphere regions. Located at an altitude of 85 kilometres, such a cloud is the highest on Earth and can be seen only when darkness has just set in on the planet. Hence, clouds of this kind have been called noctilucent clouds (noctilucent cloud). They are thought to be composed of charged and possibly dusty ice crystals that form in the coldest portion of the atmosphere at a temperature of 120 K. This unusual medium has much in common with dusty plasmas in planetary rings and other cosmic systems. Noctilucent clouds have been increasing in frequency throughout the 20th century and may be a forerunner of global change.

      High-energy particles also exist in the magnetosphere. At about 1.5 and 3.5 Earth radii from the centre of the planet, two regions contain high-energy particles. These regions are the Van Allen radiation belts (Van Allen radiation belt), named after the American scientist James Van Allen, who discovered them using radiation detectors aboard early spacecraft. The charged particles in the belts are trapped in the mirror system formed by the Earth's magnetic dipole field.

      Plasma can exist briefly in the lowest regions of the Earth's atmosphere. In a lightning stroke an oxygen-nitrogen plasma is heated at approximately 20,000 K with an ionization of about 20 percent, similar to that of a laboratory arc. Although the stroke is only a few centimetres thick and lasts only a fraction of a second, tremendous energies are dissipated. A lightning flash between the ground and a cloud, on the average, consists of four such strokes in rapid succession. At all times, lightning is occurring somewhere on the Earth, charging the surface negatively with respect to the ionosphere by roughly 200,000 volts, even far from the nearest thunderstorm. If lightning ceased everywhere for even one hour, the Earth would discharge. An associated phenomenon is ball lightning. There are authenticated reports of glowing, floating, stable balls of light several tens of centimetres in diameter occurring at times of intense electrical activity in the atmosphere. On contact with an object, these balls release large amounts of energy. Although lightning balls are probably plasmas, so far no adequate explanation of them has been given.

      Considering the origins of plasma physics and the fact that the universe is little more than a vast sea of plasma, it is ironic that the only naturally occurring plasmas at the surface of the Earth besides lightning are those to be found in ordinary matter. The free electrons responsible for electrical conduction in a metal constitute a plasma. Ions are fixed in position at lattice points, and so plasma behaviour in metals is limited to such phenomena as plasma oscillations and electron cyclotron waves (called helicon waves) in which the electron component behaves separately from the ion component. In semiconductors, on the other hand, the current carriers are electrons and positive holes, the latter behaving in the material as free positive charges of finite mass. By proper preparation, the number of electrons and holes can be made approximately equal so that the full range of plasma behaviour can be observed.

Magnetic fields
      The importance of magnetic fields in astrophysical phenomena has already been noted. It is believed that these fields are produced by self-generating dynamos, although the exact details are still not fully understood. In the case of the Earth (geomagnetic field), differential rotation in its liquid conducting core causes the external magnetic dipole field (manifest as the North and South poles). Cyclonic turbulence in the liquid, generated by heat conduction and Coriolis forces (apparent forces accompanying all rotating systems, including the heavenly bodies), generates the dipole field from these loops. Over geologic time, the Earth's field occasionally becomes small and then changes direction, the North Pole becoming the South Pole and vice versa. During the times in which the magnetic field is small, cosmic rays can more easily reach the Earth's surface and may affect life forms by increasing the rate at which genetic mutations (mutation) occur.

      Similar magnetic-field generation processes are believed to occur in both the Sun and the Milky Way Galaxy. In the Sun the circular internal magnetic field is made observable by lines of force apparently breaking the solar surface to form exposed loops; entry and departure points are what are observed as sunspots. Although the exterior magnetic field of the Earth is that of a dipole, this is further modified by currents in both the ionosphere and magnetosphere. Lunar and solar tides in the ionosphere lead to motions across the Earth's field that produce currents, like a dynamo, that modify the initial field. The auroral oval current systems discussed earlier create even larger magnetic-field fluctuations. The intensity of these currents is modulated by the intensity of the solar wind, which also induces or produces other currents in the magnetosphere. Such currents taken together constitute the essence of a magnetic storm.

Bruce Sween Liley Michael C. Kelley

Additional Reading
Yaffa Eliezer and Shalom Eliezer, The Fourth State of Matter: An Introduction to the Physics of Plasma, 2nd ed. (2001), is a useful starting point for general readers. More-advanced texts, some with applications in nuclear fusion and in terrestrial plasmas, include Francis F. Chen, Introduction to Plasma Physics and Controlled Fusion (1984); Michael C. Kelley and Rodney A. Heelis, The Earth's Ionosphere: Plasma Physics and Electrodynamics (1989); R.J. Goldston and P.H. Rutherford, Introduction to Plasma Physics (1995, reissued 2000); and Masahiro Wakatani and Kyoji Nishikawa, Plasma Physics: Basic Theory with Fusion Applications, 3rd rev. ed. (2000), which begins at an introductory level.Overviews of nuclear fusion efforts involving plasmas include Ruth Howes and Anthony Fainberg (eds.), The Energy Sourcebook: A Guide to Technology, Resources, and Policy (1991); and National Research Council (U.S.), Fusion Science Assessment Committee, An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program (2001). An accessible description of one approach to fusion energy production is Gerald Yonas, “Fusion and the Z Pinch,” Scientific American, 279(2): 40–45 (August 1998).Robert H. Eather, Majestic Lights: The Aurora in Science, History, and the Arts (1980), is a broad treatment of the aurora, with numerous illustrations. An accessible account of research on the solar plasma is given in Robert Irion, “Our Tortured Star,” New Scientist, 162(2184): 44–48 (May 1, 1999).Simeon Potter

* * *

Universalium. 2010.

Look at other dictionaries:

  • plasma — [ plasma ] n. m. • 1845; plasme « calcédoine verte » 1752; mot gr. « chose façonnée » 1 ♦ Plasma sanguin, ou absolt plasma : partie liquide du sang. ⇒ sérum; plasmaphérèse . Plasma lyophilisé. 2 ♦ (1962) État de la matière portée à très haute… …   Encyclopédie Universelle

  • plasma- — ⇒PLASMA , PLASM(O) , (PLASM , PLASMO )élém. formants I. L élém. est ou représente le subst. plasma. A. BIOL., MÉD. [Corresp. à plasma A 1 a] 1. [Le mot constr. est un adj.; le 2e élém. est un suff.] V. plasmatique (dér. s.v. plasma). 2. [Les mots …   Encyclopédie Universelle

  • Plasma — Saltar a navegación, búsqueda El término Plasma puede referirse a los siguientes artículos: Plasma sanguíneo, el componente líquido de la sangre. Plasma seminal, el componente líquido del semen. Plasma, el cuarto estado de la materia y el más… …   Wikipedia Español

  • plasmă — PLÁSMĂ s.f. 1. Parte lichidă a sângelui sau a limfei formată din apă, săruri, protide, lipide, glucide, anticorpi etc. 2. Substanţă gazoasă puternic ionizată, ale cărei proprietăţi fizice sunt determinate de existenţa ionilor şi a electronilor în …   Dicționar Român

  • Plasma — may refer to: * Blood plasma, the yellow colored liquid component of blood, in which blood cells are suspended * Plasma (physics), an ionized gas, the fourth state of matter **Plasma display, a common application of plasma (physics), a flat panel …   Wikipedia

  • Plasma — Sn Blutflüssigkeit; Substanz, in der sich Stoff und Energiewechsel vollzieht per. Wortschatz fach. (19. Jh.) Neoklassische Bildung. Neoklassische Übernahme aus spl. plasma, dieses aus gr. plásma Gebilde zu gr. plássein kneten, bilden, gestalten …   Etymologisches Wörterbuch der deutschen sprache

  • Plasma — Plas ma, n. [See {Plasm}.] 1. (Min.) A variety of quartz, of a color between grass green and leek green, which is found associated with common chalcedony. It was much esteemed by the ancients for making engraved ornaments. [1913 Webster] 2. (Biol …   The Collaborative International Dictionary of English

  • plasma — m. hemat. Fracción líquida de la sangre y de la linfa en la que se encuentran suspendidos los componentes sólidos. Está formado por agua, electrólitos, glucosa, lípidos, proteínas, gases disueltos y bilirrubina. El plasma es fundamental para el… …   Diccionario médico

  • plasma — Element prim de compunere savantă cu semnificaţia (referitor la) plasmă (1), de plasmă (1) . [var. plasmo . / < fr., gr. plasma]. Trimis de LauraGellner, 13.09.2007. Sursa: DN …   Dicționar Român

  • plasma — (n.) 1712, form, shape (earlier plasm, 1620), from L.L. plasma, from Gk. plasma something molded or created, from plassein to mold, originally to spread thin, from PIE *plath yein, from root *pele flat, to spread (see PLANE (Cf. plane) (n …   Etymology dictionary

  • plasma — s. m. 1.  [Fisiologia] Líquido claro onde se encontram os glóbulos do sangue e da linfa (ex.: plasma sanguíneo). 2.  [Física nuclear] Meio gasoso a alta temperatura, em equilíbrio termodinâmico, eletricamente neutro mas condutor da eletricidade,… …   Dicionário da Língua Portuguesa

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.