non-Euclidean geometry


non-Euclidean geometry
geometry based upon one or more postulates that differ from those of Euclid, esp. from the postulate that only one line may be drawn through a given point parallel to a given line.
[1870-75; NON- + EUCLIDEAN]

* * *

Any theory of the nature of geometric space differing from the traditional view held since Euclid's time.

These geometries arose in the 19th century when several mathematicians working independently explored the possibility of rejecting Euclid's parallel postulate. Different assumptions about how many lines through a point not on a given line could be parallel to that line resulted in hyperbolic geometry and elliptic geometry. Mathematicians were forced to abandon the idea of a single correct geometry; it became their task not to discover mathematical systems but to create them by selecting consistent axioms and studying the theorems that could be derived from them. The development of these alternative geometries had a profound impact on the notion of space and paved the way for the theory of relativity. See also Nikolay Lobachevsky, Bernhard Riemann.

* * *

Introduction

       Comparison of Euclidean, spherical, and hyperbolic geometriesliterally any geometry that is not the same as Euclidean geometry. Although the term is frequently used to refer only to hyperbolic geometry (non-Euclidean geometry), common usage includes those few geometries (hyperbolic and spherical (non-Euclidean geometry)) that differ from but are very close to Euclidean geometry (see table (Comparison of Euclidean, spherical, and hyperbolic geometries)).

      The non-Euclidean geometries developed along two different historical threads. The first thread started with the search to understand the movement of stars and planets in the apparently hemispherical sky. For example, Euclid (flourished c. 300 BC) wrote about spherical geometry in his astronomical work Phaenomena. (See cosmos: Astronomical theories of the ancient Greeks (Cosmos).) In addition to looking to the heavens, the ancients attempted to understand the shape of the Earth and to use this understanding to solve problems in navigation over long distances (and later for large-scale surveying). These activities are aspects of spherical geometry.

      The second thread started with the fifth (“parallel”) postulate in Euclid's Elements:

If a straight line falling on two straight lines makes the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, will meet on that side on which the angles are less than the two right angles.

      For 2,000 years following Euclid, mathematicians attempted either to prove the postulate as a theorem (based on the other postulates) or to modify it in various ways. (See geometry: Non-Euclidean geometries (geometry).) These attempts culminated when the Russian Nikolay Lobachevsky (Lobachevsky, Nikolay Ivanovich) (1829) and the Hungarian János Bolyai (Bolyai, János) (1831) independently published a description of a geometry that, except for the parallel postulate, satisfied all of Euclid's postulates and common notions. It is this geometry that is called hyperbolic geometry.

Spherical geometry
      From early times, people noticed that the shortest distance between two points on Earth were great circle routes (great circle route). For example, the Greek astronomer Ptolemy wrote in Geography (c. AD 150):

It has been demonstrated by mathematics that the surface of the land and water is in its entirety a sphere…and that any plane which passes through the centre makes at its surface, that is, at the surface of the Earth and of the sky, great circles.

  Great circles are the “straight lines” of spherical geometry. This is a consequence of the properties of a sphere, in which the shortest distances on the surface are great circle routes. Such curves are said to be “intrinsically” straight. (Note, however, that intrinsically straight and shortest are not necessarily identical, as shown in the figure—>.) Three intersecting great circle arcs form a spherical triangle (see figure—>); while a spherical triangle must be distorted to fit on another sphere with a different radius, the difference is only one of scale. In differential geometry, spherical geometry is described as the geometry of a surface with constant positive curvature.

      There are many ways of projecting a portion of a sphere, such as the surface of the Earth, onto a plane. These are known as maps or charts and they must necessarily distort distances and either area or angles. Cartographers (cartography)' need for various qualities in map projections (map) gave an early impetus to the study of spherical geometry.

 Elliptic geometry is the term used to indicate an axiomatic formalization of spherical geometry in which each pair of antipodal points is treated as a single point. An intrinsic analytic view of spherical geometry was developed in the 19th century by the German mathematician Bernhard Riemann (Riemann, Bernhard); usually called the Riemann sphere (see figure—>), it is studied in university courses on complex analysis (analysis). Some texts call this (and therefore spherical geometry) Riemannian geometry, but this term more correctly applies to a part of differential geometry that gives a way of intrinsically describing any surface.

      The first description of hyperbolic geometry was given in the context of Euclid's postulates, and it was soon proved that all hyperbolic geometries differ only in scale (in the same sense that spheres only differ in size). In the mid-19th century it was shown that hyperbolic surfaces must have constant negative curvature. However, this still left open the question of whether any surface with hyperbolic geometry actually exists.

 In 1868 the Italian mathematician Eugenio Beltrami (Beltrami, Eugenio) described a surface, called the pseudosphere, that has constant negative curvature. However, the pseudosphere is not a complete model for hyperbolic geometry, because intrinsically straight lines on the pseudosphere may intersect themselves and cannot be continued past the bounding circle (neither of which is true in hyperbolic geometry). In 1901 the German mathematician David Hilbert (Hilbert, David) proved that it is impossible to define a complete hyperbolic surface using real analytic functions (essentially, functions that can be expressed in terms of ordinary formulas). In those days, a surface always meant one defined by real analytic functions, and so the search was abandoned. However, in 1955 the Dutch mathematician Nicolaas Kuiper proved the existence of a complete hyperbolic surface, and in the 1970s the American mathematician William Thurston described the construction of a hyperbolic surface. Such a surface, as shown in the figure—>, can also be crocheted.

 In the 19th century, mathematicians developed three models of hyperbolic geometry that can now be interpreted as projections (or maps) of the hyperbolic surface. Although these models all suffer from some distortion—similar to the way that flat maps distort the spherical Earth—they are useful individually and in combination as aides to understand hyperbolic geometry. In 1869–71 Beltrami and the German mathematician Felix Klein (Klein, Felix) developed the first complete model of hyperbolic geometry (and first called the geometry “hyperbolic”). In the Klein-Beltrami model (shown in the figure—>, top left), the hyperbolic surface is mapped to the interior of a circle, with geodesics in the hyperbolic surface corresponding to chords in the circle. Thus, the Klein-Beltrami model preserves “straightness” but at the cost of distorting angles. About 1880 the French mathematician Henri Poincaré (Poincaré, Henri) developed two more models. In the Poincaré disk model, the hyperbolic surface is mapped to the interior of a circular disk, with hyperbolic geodesics mapping to circular arcs (or diameters) in the disk that meet the bounding circle at right angles. In the Poincaré upper half-plane model, the hyperbolic surface is mapped onto the half-plane above the x-axis, with hyperbolic geodesics mapped to semicircles (or vertical rays) that meet the x-axis at right angles. Both Poincaré models distort distances while preserving angles as measured by tangent lines.

David W. Henderson Daina Taimina

Additional Reading
David W. Henderson and Daina Taimina, Experiencing Geometry: Euclidean and Non-Euclidean with History, 3rd ed. (2005), compares non-Euclidean geometries and includes directions for constructing hyperbolic surfaces. John McCleary, Geometry from a Differentiable Viewpoint (1994), emphasizes the history of the subject from Euclid's fifth (parallel) postulate and the development of the hyperbolic plane through the genesis of differential geometry. University of Minnesota, Geometry Center, Not Knot (1991), is a videotaped documentary that combines computer animations of hyperbolic spaces with a discussion that is accessible to a general audience.

* * *


Universalium. 2010.

Look at other dictionaries:

  • Non-Euclidean geometry — Behavior of lines with a common perpendicular in each of the three types of geometry Non Euclidean geometry is the term used to refer to two specific geometries which are, loosely speaking, obtained by negating the Euclidean parallel postulate,… …   Wikipedia

  • non-Euclidean geometry — noun (mathematics) geometry based on axioms different from Euclid s non Euclidean geometries discard or replace one or more of the Euclidean axioms • Topics: ↑mathematics, ↑math, ↑maths • Hypernyms: ↑geometry …   Useful english dictionary

  • non-Euclidean geometry — noun Any system of geometry not based on the set of axioms of Euclidean geometry, which is based on the three dimensional space of common experience. Ant: Euclidean geometry …   Wiktionary

  • non-Euclidean geometry — See geometry …   Philosophy dictionary

  • Models of non-Euclidean geometry — are mathematical models of geometries in which are non Euclidean in the sense that it is not the case that exactly one line can be drawn parallel to a given line l through a point that is not on l. In hyperbolic geometric models, by contrast,… …   Wikipedia

  • Euclidean geometry — geometry based upon the postulates of Euclid, esp. the postulate that only one line may be drawn through a given point parallel to a given line. [1860 65] * * * Study of points, lines, angles, surfaces, and solids based on Euclid s axioms. Its… …   Universalium

  • non-Euclidean — non Eu•clid•e•an [[t]ˌnɒn yuˈklɪd i ən[/t]] adj. cvb math. differing from the postulates of Euclid or based upon postulates other than those of Euclid: non Euclidean geometry[/ex] • Etymology: 1870–75 …   From formal English to slang

  • Euclidean geometry — A Greek mathematician performing a geometric construction with a compass, from The School of Athens by Raphael. Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his… …   Wikipedia

  • Non-Euclidean crystallographic group — In mathematics, a non Euclidean crystallographic group, NEC group or N.E.C. group is a discrete group of isometries of the hyperbolic plane. These symmetry groups correspond to the wallpaper groups in euclidean geometry. A NEC group which… …   Wikipedia

  • non-euclidean — adjective Usage: often capitalized E Date: 1872 not assuming or in accordance with all the postulates of Euclid s Elements < non euclidean geometry > …   New Collegiate Dictionary


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.