motivation


motivation
motivational, adj.motivative, adj.
/moh'teuh vay"sheuhn/, n.
1. the act or an instance of motivating.
2. the state or condition of being motivated.
3. something that motivates; inducement; incentive.
[1870-75; MOTIVE + -ATION]

* * *

Factors within a human being or animal that arouse and direct goal-oriented behaviour.

Motivation has long been a central subject of study in psychology. Early researchers, influenced by Charles Darwin, ascribed much of animal and human behaviour to instinct. Sigmund Freud believed that much of human behaviour was also based on irrational instinctive urges or unconscious motives. Walter B. Cannon proposed that basic human drives served homeostatic functions by directing energies toward the reduction of physiological tensions. Behavioral psychologists, in contrast, stress the importance of external goals in prompting action, while humanistic psychologists examine the role of felt needs. Cognitive psychologists have found that a motive sensitizes a person to information relating to that motive: a hungry subject, for example, will perceive food stimuli as larger than other stimuli. See also behaviour genetics; human nature; learning.

* * *

Introduction

      forces acting either on or within a person to initiate behaviour (human behaviour). The word is derived from the Latin term motivus (“a moving cause”), which suggests the activating properties of the processes involved in psychological (psychology) motivation.

      Psychologists study motivational forces to help explain observed changes in behaviour that occur in an individual. Thus, for example, the observation that a person is increasingly likely to open the refrigerator door to look for food as the number of hours since the last meal increases can be understood by invoking the concept of motivation. As the above example suggests, motivation is not typically measured directly but rather inferred as the result of behavioral changes in reaction to internal or external stimuli. It is also important to understand that motivation is primarily a performance variable. That is, the effects of changes in motivation are often temporary. An individual, highly motivated to perform a particular task because of a motivational change, may later show little interest for that task as a result of further change in motivation.

      Motives are often categorized into primary, or basic, motives, which are unlearned and common to both animals and humans; and secondary, or learned, motives, which can differ from animal to animal and person to person. Primary motives are thought to include hunger, thirst, sex (sexual behaviour, human), avoidance of pain, and perhaps aggression (aggressive behaviour) and fear. Secondary motives typically studied in humans include achievement, power motivation, and numerous other specialized motives.

      Motives have also sometimes been classified into “pushes” and “pulls.” Push motives concern internal changes that have the effect of triggering specific motive states. Pull motives represent external goals that influence one's behaviour toward them. Most motivational situations are in reality a combination of push and pull conditions. For example, hunger, in part, may be signaled by internal changes in blood glucose or fat stores, but motivation to eat is also heavily influenced by what foods are available. Some foods are more desirable than others and exert an influence on our behaviour toward them. Behaviour is, thus, often a complex blend of internal pushes and external pulls.

The study of motivation

Physiological, psychological, and philosophical approaches
      Motivation has been studied in a variety of ways. For instance, it has been analyzed at the physiological (biological psychology) level using electrical and chemical stimulation of the brain, the recording of electrical brain-wave activity with the electroencephalograph, and lesion techniques, where a portion of the brain (usually of a laboratory animal) is destroyed and subsequent changes in motivation are noted. Physiological (physiology) studies performed primarily on animals other than humans have demonstrated the importance of certain brain structures in the control of basic motives such as hunger, thirst, sex, aggression, and fear.

      Motivation may also be analyzed at the individual psychological level. Such analyses attempt to understand why people act in particular ways and seek to draw general conclusions from individual cases. Through studies of individuals, for example, it has been found that both men and women proceed through a series of identifiable stages of arousal during behaviours leading to and culminating in sexual intercourse. The finding may be applied to people in general.

      Motivation of an individual is also influenced by the presence of other people. Social psychologists have been active in discovering how the presence of others in a given situation influences motivation. For example, students and teachers behave in predictable ways in the classroom. Those behaviours are often quite different, however, from the way students and teachers behave outside the classroom. Studies of conformity, obedience, and helping behaviours (which benefit others without reward) are three areas in this field that have received considerable attention.

 Finally, motivation is sometimes also approached from a more philosophical (philosophy) direction. That is, analyses of motivation are understood, at least in part, by examining the particular philosophical (mind, philosophy of) point of view espoused by the theorist. For example, some motivational theorists conceive motivation to be an aversive state: one to be avoided. Sigmund Freud's view of motivational processes could be applied within this framework; his contention that blocked sexual energy could be displaced into acceptable behaviours implies that accumulation of sexual energy (motivation) is aversive. Other theorists see motivation as a much more positive experience. That is, motivation can produce behaviours that lead to increases in future motivation. The American psychologist Abraham H. Maslow's concept of self-actualization could be applied within this framework (see below Self-actualization (motivation)).

Debates in motivational study
The nomothetic versus ideographic approach
      However motivation is studied, certain fundamental debates have typified the positions taken by researchers. One such debate concerns the question of whether it is better to study groups of individuals and attempt to draw general conclusions (termed the nomothetic approach) or to study the behaviours that make individuals unique (termed the idiographic approach). Although both approaches have added to the understanding of motivational processes, the nomothetic approach has dominated motivational research.

Innate versus acquired processes
      A second debate among theorists concerns the degree to which motivational processes are innate (genetically programmed) versus acquired (learned). Since the 1890s this debate has swung from one extreme to the other and then back toward the middle. Early approaches viewed motivation as largely or entirely instinctive (instinct). When the instinctive approach fell into disfavour during the 1920s, the idea that all behaviours were learned largely replaced the instinctive approach. By the 1960s, and continuing to the present, research indicated that the answer to the debate is that both positions are correct. Some motives, in some species, do appear to be largely innate, as, for example, in the courting behaviour of the three-spined stickleback, a small fish of the Northern Hemisphere (see below Biological approaches to motivation: Genetic contributions (motivation)). Other motives, such as achievement motivation, seem more closely associated with learning. Some motive states, such as extreme shyness, seem to result from an innate predisposition coupled with a particular environment where learning interacts with the predisposition.

Internal needs versus external goals
      Another dimension along which debates concerning motivational processes have flourished is the question of whether motivation is primarily the result of internal needs or external goals. As noted earlier, this dimension describes differences between push and pull motives. Research suggests that some motive states are best classified as internal (push motives) while other motive states develop from goals external to the individual (pull motives). Many real-life situations are undoubtedly a combination of both internal and external motives.

Mechanistic versus cognitive processes
      Finally, researchers have tended to view motivational processes as either mechanistic or cognitive. The first of these assumes that motivational processes are automatic; that is, the organism, human or otherwise, need not understand what it is doing in order for the processes to work. This point of view has achieved considerable popularity. Neither conscious awareness nor intent is assumed to be operative in the mechanistic approach. Researchers taking the mechanistic point of view are often interested in studying internal need states and genetically programmed behaviours. The second and newer approach, promoted by researchers more often interested in external and acquired motives, has emphasized the importance of cognition in motivational processes. The cognitive approach assumes that the way in which one interprets information influences motives. Cognitive motivational approaches assume that the active processing of information has important influences on future motivation. Given the complexity of motivational processes, most theorists feel safe in assuming that some motive states are relatively mechanistic while others are more cognitive.

Historical overview

Philosophers' contributions
 The history of motivational thought reflects the considerable influence of philosophers and physiologists. For example, the concept of free will as proposed by Aristotle and others was a widely accepted philosophical position until it was generally rejected in favour of determinism. Determinism, as the term is used by psychologists, holds that every behaviour has some antecedent cause. One antecedent to which particular behaviours are often attributed is motivation. Thus, if one sees a woman hurriedly eating a sandwich while continually glancing at her watch, one might infer that she is late for an appointment rather than that she is ravenously hungry. Regardless of the eventual explanation that would allow us to understand her behaviour, we do not assume that she is behaving randomly. Rather, we assume some motive is causing her to behave as she does.

 Aristotle's belief that the mind is at birth a blank slate upon which experience writes was the basis for studying the effects of learning on behaviour. The 17th-century philosopher René Descartes (Descartes, René) proposed the concept of mind-body dualism (mind–body dualism), which implied that human behaviour could be understood as resulting from both a free, rational soul and from automatic, nonrational processes of the body. His proposition that nonrational, mechanistic processes of the body could motivate behaviour under some circumstances led to the development of the concept of instinct and provided a counterpoint to Aristotle's emphasis on learning as the most important concept in the control of behaviour. Today, the mechanistic component of Descartes's dualism can be seen as the distant forerunner of the study of genetic components of motivation, while his other view of rational choices can be regarded as a precursor of modern cognitive approaches to motivation.

  British empiricist philosophers, as exemplified by John Locke (Locke, John), also contributed to the development of modern motivational theory. Locke's emphasis on the importance of sensory experience can be understood as underlying the modern focus on external stimulation as motivating. Many psychologists believe that goals become valuable to us because of the sensory experience associated with these goals. Thus, for example, the motivating properties that cause a person to drive across the city to eat a particular food are thought to result from the desirable taste, smell, and perhaps texture of the food itself. If the food tasted and smelled like cardboard, it would not motivate future trips across the city to obtain it. Locke also provided the important concept of association. As proposed by Locke, one idea can become associated, or linked, to another to produce a new, more complex idea. The concept of association provides an explanation for how nonmotivating experiences can become motivating. If one pairs a nonmotivating stimulus with a highly motivating object several times, the formerly neutral stimulus begins to motivate behaviour in a fashion similar to the original object. Research has shown that, under some circumstances, phobias and other motives may be acquired through such association. The associative mechanism can serve as an example of Pavlovian classical conditioning (Pavlovian conditioning). (Ivan P. Pavlov (Pavlov, Ivan Petrovich) was a Russian scientist who taught dogs to associate food with the sound of a bell; the dogs learned to salivate at the sound of a bell, demonstrating what has been termed a conditioned response.) Perhaps the most commonly associated stimulus in Western society that is recognized for its strong motivational properties is money. Because money is paired with many strong motivators, it often becomes strongly motivating itself.

Physiologists' contributions
  Motivational research has also progressed through discoveries made in the field of physiology. The discovery of separate nerve fibers for sensory and motor information first suspected by the Greek physician Galen (Galen Of Pergamum) and separately confirmed by the English anatomist Sir Charles Bell (Bell, Sir Charles) in 1811 and the French physiologist François Magendie (Magendie, François) in 1822 led naturally to the development of the stimulus-response approach to motivation, which has become fundamental to the field.

   The discovery of the electrical nature of the nerve impulse, first suggested by the Italian physician and physicist Luigi Galvani's (Galvani, Luigi) experiments in the 1770s and '80s with frogs and later directly measured by the German physiologist Emil Du Bois-Reymond (Du Bois-Reymond, Emil Heinrich) in 1848–49 using a galvanometer, showed that nerves are not canals by which animal spirits flow through the body, as had been commonly thought, but are rather the conveyors of signals sent from one area of the body to another. The German psychologist Georg E. Müller (Müller, Georg Elias) added the concept of specific nerve energies, which proposed that the electrical signals passing along the nerves were specific, coded messages, while the German scientist Hermann von Helmholtz (Helmholtz, Hermann von) measured the speed of the nerve impulse and found it to be about 100 miles (160 kilometres) per hour. These discoveries made it clear that the nervous system could be studied and paved the way for examination of its role in the motivation of behaviour.

      Studies of the localization of function within the nervous system, especially the brain, derived at least in part from the phrenology of the German physician Franz Josef Gall (Gall, Franz Joseph) during the early 1800s. Although phrenology has been thoroughly discredited, it indirectly contributed to the localization of motivational systems within such brain areas as the hypothalamus.

 The contributions from philosophical and physiological sources have generated several stages of evolution in motivational theory since the late 19th century. In the 1800s Descartes' dualism was often used to distinguish between animal and human motivation. By the end of the 19th century, behavioral theorists such as the American psychologists William James (James, William) and William McDougall (McDougall, William) had begun to emphasize the instinctive component of human behaviour and to de-emphasize, and in some cases eliminate from discussion, the more mentalistic concept of will. Other behaviourists, as exemplified by the American psychologist John B. Watson (Watson, John B.), rejected theories of both instinct and will and emphasized the importance of learning in behaviour. This group conceived behaviour to be a reaction or response (R) to changes in environmental stimulation (S); their S-R psychology subsequently gained popularity, becoming the basis for the school of behaviourism. By the 1920s, the concept of instinct as proposed by theorists such as James and McDougall had been roundly criticized and fell into disrepute. Behaviourism dominated the thinking of motivational theorists and a new motivational concept, drive, congenial to behaviourism's S-R approach, was born. Drive, initially proposed by the American psychologist Robert S. Woodworth (Woodworth, Robert S.), was developed most fully by Clark Hull (Hull, Clark L.), an American psychologist who conceived motivation to result from changed internal bodily needs, which were in turn satisfied by obtaining specific items from the environment. Thus, hunger motivation was thought to occur as a result of a changed internal need for energy that motivated food-seeking behaviour in the environment.

      Behaviourism dominated motivational research until the 1960s, but even in the 1920s and '30s dissenting voices were heard. Researchers such as the American psychologist Edward C. Tolman (Tolman, Edward C.) and the German psychologist Wolfgang Köhler (Köhler, Wolfgang) argued for the existence of a more active processing of information in both humans and animals and rejected the mechanistic S-R psychology. These early cognitive psychologists opened the way for other researchers to examine motivation resulting from the expectation of future events, choices among alternatives, and attributions concerning outcomes. In other words, with the advent of cognitive explanations of motivated behaviour, it became possible to argue that behaviours were sometimes purposive. The cognitive approach has proved useful in the analysis of several types of motivation, among them achievement behaviour, dissonance motivation, and self-actualization (see below Cognitive motivation (motivation)).

      Changing perspectives and research on motivation have led away from large, all-encompassing theories of motivation to smaller, discrete theories that explain specific motives or specific aspects of motivation under particular conditions. These microtheories of motivation are conveniently categorized as falling within three major areas: biological, behavioristic, and cognitive explanations.

Biological approaches to motivation
      The biological microtheories of motivation can be divided into three categories: genetic contributions to motivated behaviour (behaviour genetics), arousal mechanisms, and biological monitoring systems.

Genetic contributions
 As indicated above, the idea that some motivated behaviours are the result of innate programs manifested in the nervous system had been proposed by James and McDougall in the late 1800s and early 1900s. These early instinct approaches fell into disfavour during the 1920s because of their proponents' inability to discriminate between instinctive and learned behaviours and because of the realization that labeling an observed behaviour as instinctive did not explain why the behaviour occurred. In Europe, however, a group of biologists interested in the evolutionary significance of animal behaviours kept the concept alive and continued to study the genetic basis of behaviour. Three of these researchers (the Austrians Karl von Frisch (Frisch, Karl von) and Konrad Lorenz (Lorenz, Konrad) and the Netherlander Nikolaas Tinbergen (Tinbergen, Nikolaas)) were awarded a Nobel Prize in 1973 for their work on the subject. They were early entrants in the field of study known as ethology, which studies the behaviour patterns of animals in their natural habitat. Ethologists argue that the evolutionary significance of a particular behaviour can best be understood after a taxonomy of behaviours for that species has been developed as a result of observation in nature. They propose further that the significance of a behaviour is often clearer when observed in the context of other behaviours of that animal. Ethologists use naturalistic observation and field studies as their most common techniques.

      The research conducted by the ethologists showed that some behaviours of some animal species were released in an automatic and mechanical fashion when conditions were appropriate. These behaviours, known as fixed-action patterns, have several salient characteristics: they are specific to the species under study, occur in a highly similar fashion from one occurrence to the next, and do not appear to be appreciably altered by experience. Furthermore, the stimulus that releases these genetically programmed behaviours is usually highly specific, such as a particular colour, shape, or sound. Such stimuli are termed key stimuli or sign stimuli and when provided by a conspecific organism (a member of the same species) are known as social releasers.

      One thoroughly researched example of this type of genetically programmed behaviour is the courtship behaviour of the three-spined stickleback, a small fish. During the reproductive season, male sticklebacks become territorial and defend a portion of the streambed against other intruding stickleback males. Ethological analysis of this aggressive behaviour reveals that it is a series of fixed-action patterns released by the reddish coloration of the ventral (under) surface of the intruding males. A female stickleback entering the territory is not attacked because she does not possess the red coloration. Instead she is courted through a complex series of movements termed the zigzag dance. This behaviour pattern performed by the male stickleback is released by the shape of the ventral surface of the female, which is distended as a result of the eggs she carries. (See animal behaviour: Components of behaviour: Movement (animal behaviour)).

      Although the largest number of studies conducted by ethologists has been on nonhuman animals, some ethological researchers have applied the same kinds of analyses to human behaviour. Prominent among these is the Austrian ethologist Irenäus Eibl-Eibesfeldt. In a book entitled Love and Hate: The Natural History of Behavior Patterns, he summarized many years of cross-cultural research on human genetic behaviour patterns. Interestingly, research on the facial expressions associated with emotion has provided some support for the existence of innate motivations in humans.

Motivation as arousal (activation)
The James-Lange theory
      A second biological approach to the study of human motivation has been the study of mechanisms that change the arousal level of the organism. Early research on this topic emphasized the essential equivalency of changes in arousal, changes in emotion, and changes in motivation. It was proposed that emotional expressions and the motivation of behaviour are the observable manifestations of changes in arousal level. One of the earliest arousal theories suggested that one's perception of emotion depends upon the bodily responses the individual makes to a specific, arousing situation. This theory became known as the James-Lange theory of emotion after the two researchers, William James and the Danish physician Carl Lange, who independently proposed it in 1884 and 1885 respectively. The theory argued, for example, that experiencing a dangerous event such as an automobile accident leads to bodily changes such as increased breathing and heart rate, increased adrenaline output, and so forth. These changes are detected by the brain and the emotion appropriate to the situation is experienced. In the example of the automobile accident, fear might be experienced as a result of these bodily changes.

The Cannon-Bard theory
      Walter B. Cannon (Cannon, Walter Bradford), a Harvard physiologist, questioned the James-Lange theory on the basis of a number of observations; he noted that the feedback from bodily changes can be eliminated without eliminating emotion; that the bodily changes associated with many quite different emotional states are similar, making it unlikely that these changes serve to produce particular emotions; that the organs supposedly providing the feedback to the brain concerning these bodily changes are not very sensitive; and that these bodily changes occur too slowly to account for experienced emotions.

      Cannon and a colleague, Philip Bard, proposed an alternative arousal theory, subsequently known as the Cannon-Bard theory. According to this approach, the experience of an event, such as the automobile accident mentioned earlier, leads to the simultaneous determination of emotion and changes to the body. The brain, upon receiving information from the senses, interprets an event as emotional while at the same time preparing the body to deal with the new situation. Thus, emotional responses and changes in the body are proposed to be preparations for dealing with a potentially dangerous emergency situation.

The Schachter-Singer model
      In 1962 the American psychologists Stanley Schachter and Jerome Singer performed an experiment that suggested to them that elements of both the James-Lange and Cannon-Bard theories are factors in the experience of emotion. Their cognitive-physiological theory of emotion proposed that both bodily changes and a cognitive label are needed to experience emotion completely. The bodily changes are assumed to occur as a result of situations that are experienced, while the cognitive label is considered to be the interpretation the brain makes about those experiences. According to this view, one experiences anger as a result of perceiving the bodily changes (increased heart rate and breathing, adrenaline production, and so forth) and interpreting the situation as one in which anger is appropriate or would be expected. The Schachter-Singer model of emotional arousal has proved to be popular although the evidence for it remains modest. Other researchers have suggested that bodily changes are unnecessary for the experience of emotional arousal and that the cognitive label alone is sufficient.

The inverted-U function
      The relationship between changes in arousal and motivation is often expressed as an inverted-U function (also known as the Yerkes-Dodson law). The basic concept is that, as arousal level increases, performance improves, but only to a point, beyond which increases in arousal lead to a deterioration in performance. Thus some arousal is thought to be necessary for efficient performance, but too much arousal leads to anxiety or stress, which degrades performance.

      The search for a biological mechanism capable of altering the arousal level of an individual led to the discovery of a group of neurons (neuron) (nerve cells) in the brain stem named the reticular activating system, or reticular formation. These cells, which are found along the center of the brain stem, run from the medulla to the thalamus and are responsible for changes in arousal that move a person from sleeping to waking. They are also believed to function in relation to an individual's attention factor.

sleep processes and stress reactions
      Research on arousal mechanisms of motivation has furthered understanding of both sleep processes and stress reactions. In the case of sleep, arousal levels generally seem lower than during waking; however, during one stage of sleep arousal levels appear highly similar to those in the waking state. Sleep itself may be considered a motivational state. The biological motivation to sleep can become so overpowering that individuals can fall asleep while driving an automobile or while engaged in dangerous tasks.

      Five stages of sleep have been defined using the electroencephalograph (electroencephalography) (EEG). The EEG records the electrical activity of neurons in the outermost portion of the brain known as the cerebral cortex.

      According to EEG-based findings, everyone cycles through five stages during sleep. A complete cycle averages approximately 90 minutes. The two most interesting stages of sleep from a motivational point of view are stages 4 and 5. Stage 4 represents the deepest sleep in that the brain-wave activity as measured by the EEG is farthest from the activity seen when a person is awake. The brain-wave pattern is characterized by delta waves, which are large, irregular, and slow; breathing, heart rate, and blood pressure are also reduced. Because the overall activity of the individual in stage 4 is greatly reduced, it has been suggested by some researchers that stage 4 (and perhaps also stage 3) sleep serves a restorative function. However, a potential problem with such an explanation is that stage 4 sleep drops dramatically after age 30 and may be entirely absent in some people aged 50 or over who nevertheless appear to be perfectly healthy. Additionally, studies have shown that in the typical individual physical exhaustion does not lead to increases in stage 4 sleep as might be expected if it were serving a restorative function. The purpose of stage 4 sleep remains unknown.

      Stage 5 sleep is also known as rapid eye movement (REM) sleep because during this stage the eyes begin to move rapidly under the eyelids. Interest in stage 5 sleep has been considerable since it was discovered that most, if not all, dreaming occurs during this stage. During stage 5 sleep the EEG pattern of brain-wave activity appears very similar to the brain-wave activity of an awake, alert person. Breathing, heart rate, and blood pressure rise from the low levels observed during stage 4 and can fluctuate rapidly. In addition to eye movements, fast, small, and irregular brain waves, and autonomic changes indicative of an aroused state, individuals in stage 5 sleep display a large loss in skeletal muscle tone that amounts to a temporary paralysis. Researchers have suggested that the muscle paralysis prevents the “acting out” of our dreams.

      Another aspect of arousal processes concerns the high levels of arousal leading to a triggering of the stress reaction. The stress reaction can be triggered by a challenge to the physical integrity of the body, or it can occur as a result of some psychological challenge. Furthermore, the body appears to react in a similar fashion regardless of whether the demands made upon it are physical or psychological. Hans Selye, a Viennese-born Canadian medical researcher, showed that stressors trigger a chain of processes that begins with what is called the alarm reaction, may proceed to a second stage called the stage of resistance, and, if the stressor has still not been removed, may lead to a final stage called exhaustion.

      The alarm reaction occurs when a stressor is first detected and activates a brain structure called the hypothalamus. The hypothalamus, in turn, stimulates the sympathetic nervous system and also produces a substance called corticotropin-releasing hormone that activates the pituitary to produce adrenocorticotropic hormone (ACTH). Both ACTH and activation of the sympathetic nervous system stimulate the adrenal glands. ACTH stimulates the adrenals to produce hydrocortisone, or cortisol, an anti-inflammatory substance, while the sympathetic nervous system stimulates the centre portion of the adrenals to produce epinephrine and norepinephrine (adrenaline and noradrenaline). All these hormones are secreted into the bloodstream and have the effect of mobilizing the body to deal with the stressor. This initial mobilization is a whole-body response and leads to increases in heart rate, blood pressure, and respiration and other responses associated with high arousal. The person so aroused is, in effect, in a high state of readiness. The alarm reaction often succeeds in changing the situation so that the stressor is no longer present, as would be the case, for example, if one were to run away from a physical threat.

      In the second stage, the stage of resistance, localized responses within appropriate areas of the body replace the whole-body response of the alarm reaction, and blood levels of hydrocortisone, epinephrine, and norepinephrine return to just slightly above normal levels. During this stage the ability to fight off the stressor is high and may remain so for considerable periods of time.

      If these localized responses to a stressor prove to be inadequate, eventually the third stage of stress, that of exhaustion, will be triggered, during which hormonal levels rise once more and the whole body becomes mobilized again. Selye proposed that if the stressor is not quickly defeated during this last stage, the individual can become withdrawn, maladjusted, and even die.

      This three-part mechanism for coping with a stressor is called the general adaptation syndrome and appears to have evolved primarily to deal with systemic stressors. As noted earlier, however, this same set of processes is also triggered by psychological stressors and is often inappropriate to the situation. For example, the stress of an important upcoming test can trigger the alarm reaction, yet it is not apparent how increased levels of hydrocortisone, epinephrine, and norepinephrine would facilitate removing the stress-provoking test. It has been suggested that overstimulation of the stress response, in which psychological stressors produce physical changes in the body, can lead to psychosomatic illness. When the stress response, especially the alarm reaction, is triggered too often, it can lead to physical deterioration.

      The relationship between stress and illness has been investigated most thoroughly in regard to the effect life changes have on the likelihood of subsequent illness. The pioneer in the field was Adolph Meyer (Meyer, Adolf), a Swiss-born American psychiatrist. Several life-change scales have been developed that measure the number and severity of various life changes, such as the death of a spouse, divorce, retirement, change in living conditions, and so forth. High scores on these scales have been found to be consistently associated with an increased probability of future illness, although the relationship is not especially strong. Presumably the life changes lead to increased stress, which in turn promotes an increased likelihood of illness.

      Some research has also been conducted on the ways in which the negative effects of stressors can be reduced. A personality characteristic called hardiness has been associated with the ability to better withstand the effects of stress. People who score high in hardiness appear to have high levels of commitment toward the things they do, a strong need to control the events around them, and a willingness to accept challenges. These characteristics may serve to protect individuals from the effects of stress related to major life changes. Exercise, especially in conjunction with hardiness, was reported to relieve stress stemming from physiological and psychological causes. Other factors unrelated to hardiness, such as social support from others, optimism, and humour in the face of difficulty, also have been reported to reduce the stressful effects of life changes.

Biological monitoring systems
      For some basic motives such as hunger, thirst, and sex, a biological approach emphasizing regulatory mechanisms has dominated the thinking of researchers. The fundamental premise has been that such basic motives are homeostatically regulated—that is, the nervous system monitors levels of energy, fluid balance, and hormone production (in the case of sex) and alters motivation when these levels deviate too far from some optimum level.

      The question of why we eat when we do appears to involve two separate mechanisms. The first mechanism, typically called short-term regulation, attempts to take in sufficient energy to balance what is being expended. It is usually assumed that time between meals and meal size are determined by this short-term mechanism. A second mechanism, called long-term regulation, is directed toward storing away sufficient energy for possible later use should the short-term mechanism fail to adequately replenish energy expended. Energy for long-term use is stored in the form of fat within the fat cells of the body. Short-term regulation processes have generally been assumed to monitor the blood glucose (blood sugar) level and to initiate eating when this level falls below some predetermined optimum. Long-term regulation processes appear to monitor fat levels and to initiate eating when fat stores fall below some optimal level.

      Explanations of short-term regulation of hunger motivation have revolved around two basic ideas. The earlier of these two, known as the local theory of hunger, suggested that the hunger signals that initiate eating originate in the gastrointestinal tract, specifically the stomach. Hunger pangs were thought to be the result of stomach contractions. Considerable research has shown that such an analysis is inadequate to explain hunger motivation. For example, it is known that much of the stomach can be removed without the loss of hunger motivation. Similarly, it is known that severing the vagus nerve, which causes stomach contractions to cease, does not eliminate the experience of hunger.

      When it became apparent that the local theory of hunger was incomplete, researchers began to look for the hunger-initiating mechanism in the brain. It was quickly discovered that the hypothalamus, a small structure lying below the thalamus of the brain, is involved in the regulation of eating. Damage to the ventromedial (lower, middle) area of the hypothalamus produces a condition known as hyperphagia, in which animals overeat and gain enormous amounts of weight. Damage to a different area known as the lateral hypothalamus (located on the sides of the hypothalamus) produces a total lack of eating known as aphagia, as well as a lack of drinking, or adipsia. It was assumed that these two areas share in the control of hunger motivation by activating and deactivating hunger as glucose levels within the blood change. It was further assumed that the specialized cells (glucoreceptors) monitoring the levels of blood glucose reside in these two hypothalamic areas. This belief was weakened, however, when these glucoreceptors could not definitely be located in the brain. Additional research suggests that such glucoreceptors may reside in the liver, where new arrivals of glucose are first received and whence signals about glucose content are sent to these hypothalamic areas.

      Less is known about the long-term regulation of hunger motivation, but one suggestion has been that there exists in each individual a genetically programmed body-weight set point that determines how much energy is stored away as fat within the fat cells. According to this theory, hunger motivation would serve to keep individuals close to this set point, even though the fat level maintained may not be what the individual desires nor what society dictates as beautiful or healthy. Such a system would help to explain why weight loss is so hard to maintain in many persons.

      Processes similar to the physiological control mechanisms of hunger are thought to regulate thirst motivation and sexual behaviour. In the case of thirst, the desire to drink appears to be initiated by fluid loss from within specialized brain cells known as osmoreceptors and also from fluid loss from the area outside of cells, such as from bleeding. Thirst, therefore, would seem to be triggered by mechanisms controlling the fluid integrity both within and around the cells of the body. Cells within the hypothalamus also seem to be involved in the control of thirst motivation.

Sexual motivation
      In most animals sexual motivation is under stricter hormonal control than is the case in humans. The female of most species is not interested in sexual behaviour (sexual behaviour, human) until cyclic hormonal changes produce estrus. The male, however, is usually sexually ready but is prevented from engaging in sexual behaviour by the female until estrus occurs. Research indicates that the anterior (front) portion of the hypothalamus is involved with the estrous cycle of female mammals; it has been demonstrated that destruction of these hypothalamus cells eliminates estrus. Similarly, destruction of the anterior region of the hypothalamus reduces or eliminates sexual behaviour in male rats. Since hormone replacement therapy in both males and females is ineffective in reestablishing sexual behaviours reduced by anterior hypothalamic damage, it has been suggested that this region contains receptors sensitive to changes in the levels of circulating sex hormones. Damage to the ventromedial hypothalamus (VMH) also arrests estrus in females and sexual behaviour in males, but hormone replacement therapy successfully restores these functions, suggesting that VMH is involved with the expression of sexual behaviour when hormonal conditions are appropriate.

Behavioristic approaches to motivation
      The behavioristic approach examines how motives are learned and how internal drives and external goals interact with learning to produce behaviour. learning theorists have taken a somewhat more global perspective when studying motivation than researchers using the biological approach. These researchers have regarded motivation as one component out of several that combine to cause behaviour. Thus, for example, one major theory regards learning and motivation as combining multiplicatively to determine behaviour. Among the behavioristic approaches, three concepts are especially prominent: drive, learned motives, and incentives.

      Although in many respects Freud's psychoanalytic theory of behaviour was a drive theory, the term drive was first used by Robert S. Woodworth, an American psychologist, in 1918. The concept of drive is closely tied to the concept of homeostasis. It was assumed that drive would be triggered when internal conditions changed enough to be detected and to initiate the motivational changes that amounted to drive. Thus it was assumed that some tissue need within the body would instigate drive, which would, in turn, instigate behaviours aimed at reducing the drive. According to this sort of analysis, energy depletion would lead to a hunger drive, which would in turn lead to food-seeking behaviours. Drive, then, would serve to energize appropriate behaviours, either innate or learned, which would effect a lowering of the need state of the individual.

      The most extensive theoretical model of drive was developed by Clark Hull (Hull, Clark L.) in the 1940s. Hull argued that drive is general in nature and that various motives such as hunger, thirst, or sex may add to the overall drive level of an individual. Since drive was regarded as the instigator of behaviour, increases in drive level were expected to lead to increases in activity. According to Hull's model, drive is directed by what he termed drive stimuli. These internal stimuli were thought to be different for different motives and to direct the activity of an individual in ways appropriate for the particular motive state present. Thus, for example, a hungry person might go to the refrigerator seeking food because drive stimuli linked with hunger had been associated with responses of obtaining food from the refrigerator in the past.

      Finally, Hull suggested that learning itself depends upon adequate drive. Responses were thought to be strengthened when followed by drive or drive-stimulus reduction. If drive or drive stimuli were not reduced, then learning would not occur.

      Hull's drive theory generated a tremendous body of research, but the model of motivation he evolved was not more effective than others in explaining behaviour. For example, studies showed that increases in activity that occur when subjects are deprived depend largely on the species of the subject and the manner in which the activity is tested. Some species do not become more active when deprived, and changes in activity that are apparent when one type of apparatus is used (e.g., a running wheel) are not seen when other types of apparatus (e.g., a stabilimeter cage—for measuring caged animal activity) are used. Furthermore, drive stimuli, the proposed directional mechanism in Hull's model, have proved to be very elusive, and it is not clear that under normal circumstances their presence, if they exist, is crucial to the direction of behaviour. Finally, several studies have shown that learning can occur under circumstances that would seem to preclude any reduction in drive or drive stimuli. Since Hull's model tied learning to a reduction in drive, these studies pose a problem. Although explicit theoretical models of drive have not proved to be any better at explaining motivation than other approaches, the drive concept, in general, would seem to have some validity if only because people often express their subjective feelings of motivation in terms that suggest they are driven. In particular, the drive concept would often seem to apply to feelings associated with human sexual motivation. The drive theory no longer has wide acceptance in the motivational field.

Learned motives
      One of the most significant contributions that the learning approach has made to the study of motivation is its emphasis on the ability of individuals to learn new motives. It has been demonstrated that new motives may be acquired as a result of three learning techniques: classical, instrumental, and observational learning.

      In classical conditioning, also called Pavlovian conditioning, a neutral stimulus gains the ability to elicit a response as a result of being paired with another stimulus that already causes that response. Such learning situations can then lead to changes in motivated behaviour. Pavlov, for example, showed that dogs (dog) would develop what appeared to be neurotic behaviour if they were required to make finer and finer discriminations between stimuli in a classical conditioning discrimination experiment. The dogs became motivated to avoid the experiment room, were restless during the experimental session, and sometimes bit the apparatus. The neurosis developed when the dogs were no longer able to discriminate between the two stimuli presented to them. Later researchers have noted that this motivational change may have resulted from a lack of predictability or control on the part of the animal rather than from the classical conditioning process per se.

      In 1920 the American psychologists John B. Watson (Watson, John B.) and Rosalie Rayner demonstrated the development of an emotional response in a young boy using classical conditioning techniques. The presentation of a white rat was paired with the striking of a steel bar, which induced fear in the little boy. After only a few pairings, the white rat became capable of inducing fear responses similar to those produced by striking the bar. This early demonstration of learned emotional responses has suggested to psychologists that many human motives may result from the accidental pairing of events. It has been proposed that some fears, phobias, taste aversions, and even eating problems can result from classical conditioning.

Instrumental learning
      The second type of learning technique is instrumental learning, or conditioning, also called operant conditioning. In this type of conditioning a response is followed by some consequence which then changes the future probability of that response. For example, instrumental conditioning appears to be one way in which aggressive motivation can be changed. If an aggressive response by one child toward another child is followed by some positive event such as the aggressor getting to play with a desired toy, then the motivation to behave aggressively can be expected to increase in the future. Furthermore, through a process called conditioned reinforcement, neutral stimuli associated with a reinforcer can become reinforcers in their own right. These stimuli can then be used to motivate behaviour. Perhaps the most common example of a conditioned reinforcer is money. A piece of paper with numbers and intricate drawings on it can motivate all sorts of behaviour if that paper has previously been associated with important reinforcers such as food, clothing, sex, and so forth. Money is in effect a token of the things it can buy. Psychologists have used different types of tokens as rewards to implement reinforcement, and token economies, involving the principles of conditioned reinforcement, have been successfully used to alter behaviour in schools, institutions, and hospitals (see below Applications in society (motivation)).

Observational learning
      In the third type of learning technique, observational learning, or modeling, a new behaviour is learned simply by watching someone else behave. In a very real sense, such learning is the ability to profit from another's successes or mistakes. This type of learning is important because the learning can occur without an individual ever having to perform the behaviour. Thus, watching another child put a finger in an electrical outlet and get shocked is often enough to keep the observing child from behaving the same way. Similarly, noticing that friends do well in school because they study hard may be a sufficient stimulus to motivate students. Albert Bandura, an American psychologist, proposed, and provided a wealth of support for, the observational learning of aggression in humans. He showed that young children will mimic the aggressive responses they see performed by adults. Such aggressive responses can potentially be learned by observation of violent acts on television or in movies or by reading or hearing about violent behaviour. If the observed violent acts are further perceived to lead to desired goals, then the observed aggressive behaviours may be utilized at some future date by the observer.

      Research indicates that persons also learn their society's rules of sexual conduct through observation. These sexual values are taught in part by parents, clergy, political leaders, books, movies, and television. Although the learning is often indirect, people nevertheless learn how to express their sexuality. The rules for sexual behaviour in a given culture appear to be learned during adolescence. In monkeys, social isolation impairs sexual functioning. Although isolated monkeys seem to have adequate sexual motivation, the lack of appropriate social skills results in inappropriate behaviours. Thus, learning would appear to be a significant factor in normal sexual behaviour. It is generally thought that certain sexual preferences are also learned, by one technique or another. In one experiment a boot fetish was established in three males by pairing pictures of boots with pictures of nude women (at the conclusion of the experiment the fetish was extinguished). Such a demonstration would seem to indicate that some sexual preferences are learned.

Incentive motivation
      One area within the study of human motivation that has proved fruitful is research on incentives. Incentive motivation is concerned with the way goals influence behaviour. For example, a person might be willing to travel across the city to dine at a special restaurant that served a favourite dish. On the other hand, that same person might not be willing to travel the same distance to eat an ordinary frankfurter. The two meals have different incentive values and motivate behaviour to differing degrees.

      It is often assumed that the stimulus characteristics of the goal are what produce the goal's motivating properties. Thus, the taste, smell, and texture of one food would motivate behaviour better than these qualities in another food. Unlike drives, which were thought to be innate, incentives are usually considered to be learned. An individual is not born preferring one goal over another, but rather these preferences develop as new goals are experienced. Incentive motivation is not restricted to goals associated with the primary motives of hunger, thirst, sex, or avoidance of pain. Indeed, one of the most important aspects of this type of motivation is that any goal one seeks can motivate behaviour. For example, the goal of obtaining a high-paying job could serve as a strong motivator for studying hard in school. Goals serving as incentive motivators do not even need to physically exist at the time they activate behaviour, such as might be the case for someone who is motivated to get high grades now in order to eventually get into medical school.

      Theoretical explanations of incentive motivation have ranged from mechanical stimulus-response approaches based on classical conditioning to cognitive approaches emphasizing the learning of expectancies, as discussed in the section below. Several theories have emphasized the role of predictive cues in the development of incentive motivation. Researchers concerned primarily with human motivation have suggested that much of human behaviour can be understood as being directed toward specific goals.

Cognitive motivation
      Cognitive theories of motivation assume that behaviour is directed as a result of the active processing and interpretation of information. Motivation is not seen as a mechanical or innate set of processes but as a purposive and persistent set of behaviours based on the information available. Expectations, based on past experiences, serve to direct behaviour toward particular goals.

      Important concepts of cognitive motivation theory include expectancy-value theory, attribution theory, cognitive dissonance, self-perception, and self-actualization.

Expectancy-value theory
      According to expectancy-value theory, behaviour is a function of the expectancies one has and the value of the goal toward which one is working [expressed as B = f(E × V)]. Such an approach predicts that, when more than one behaviour is possible, the behaviour chosen will be the one with the largest combination of expected success and value. Expectancy-value theory has proved useful in the explanation of social behaviours, achievement motivation, and work motivation. Examination of its use in achievement motivation can serve to represent the various types of expectancy-value motivations.

      Achievement was initially recognized as an important source of human motivation by the American psychologist Henry Murray (Murray, Henry) in the late 1930s. Although Murray identified achievement motivation as important to the behaviour of many people, it was the American psychologists David McClelland and John Atkinson who devised a way of measuring differences in achievement motivation. These researchers used Murray's Thematic Apperception Test (TAT), a series of ambiguous pictures about which people were asked to write stories (as a determination of personality traits), to measure differences in achievement motivation. Using a technique known as content analysis, the stories were scored for achievement imagery. Based on a substantial body of research, a theoretical model was developed that rested upon the fundamental concepts of expectancy and goal value.

      The expectancy-value model of achievement motivation proposes that the overall tendency to achieve in a particular situation depends upon two stable motives—a motive for success and a motive to avoid failure—and the subjective evaluation of the probability of success in the situation. The motive for success is regarded as a relatively stable personality characteristic by the time adulthood is reached. One's motive for success is believed to result from learning in prior achievement situations where the individual has performed successfully. Thus, someone who has, for the most part, had successful experiences in the past is thought to be highly achievement-oriented. The motive to avoid failure is also assumed to be relatively stable by adulthood and represents the compilation of those prior instances where achievement behaviours were unsuccessful. It is argued that someone who has made many unsuccessful attempts in achievement situations will develop a strong motive to avoid failure.

      Since almost everyone has experienced both successes and failures during development, the theory assumes that each person has differing degrees of both motivation for success and motivation to avoid failure. These two motivations are opposing tendencies, and as a result the difference in strength between the two will determine whether a given individual is an “achiever” or not. People with high motivation for success and low motivation to avoid failure will be achievement-oriented, while people with strong motivation to avoid failure and weak motivation for success will try to avoid most achievement situations if possible.

      The expected probability of success in a particular achievement situation is also important in this achievement theory. The theory predicts that persons highly motivated for success will tend to choose to participate in achievement situations that they judge to be moderately difficult, while the theory also predicts that people highly motivated to avoid failure will tend to choose tasks that they judge to be either very easy or extremely difficult. The choices made by people either highly motivated to achieve success or to avoid failure differ because of the differing value of easy, moderate, and difficult goals for these two types of people. The model mathematically predicts that goals that require moderate effort to achieve will have the greatest value for persons highly motivated for success. Stated another way, high achievers want to obtain goals that are difficult enough to have some value but not so difficult as to be impossible or so easy as to be worthless. Persons with strong motivation to avoid failure believe they are likely to be unsuccessful. For this reason, the theory predicts that they would prefer easy tasks where success is likely or tasks so difficult that little embarrassment would ensue if they fail.

      Attempts to test these predictions have met with mixed results. Some studies have found that people scoring high in motivation for success do often choose tasks that they consider moderately difficult, while other studies have failed to find such results. Also, persons scoring high in motivation to avoid failure do sometimes choose very easy tasks, as the theory predicts, but often do not choose very difficult tasks as also predicted. Clearly much research remains to be done before the model's accuracy in predicting achievement behaviour can be judged.

Attribution theory
      A second major approach to achievement motivation rejects the expectancy-value formulation and analyzes instead the attributions that people make about achievement situations. In general, attribution theory concerns how people make judgments about someone's (or their own) behaviour—that is, the causes to which they attribute behaviour. Considerable research has found that people typically attribute behaviour either to stable personality characteristics, termed dispositions, or to the situations that were present at the time the behaviour occurred.

      In regard to achievement behaviour, the attributions of ability, effort, task difficulty, and luck are argued to be especially important in determining future achievement motivation. For example, when a person is successful at a task and attributes that success to ability, that person is likely to approach new achievement situations in the future. Similarly, if the success was attributed to an intense effort, future achievement behaviour would depend upon a willingness to expend such effort in the future. Task difficulty appears to be judged from social norms. If most people are unsuccessful at a task, it is judged to be difficult, and, if most people are successful, the task is judged to be easy. The attribution of success to task difficulty therefore, would be expected to modify future achievement behaviour. If success was judged to be due to the fact that the task was very easy, future achievement behaviour would not be expected to change much; however, success in a task judged to be very difficult might prompt a person to expand the range of tasks he or she is willing to attempt. Ascriptions of luck in an achievement task would also influence future achievement behaviour. Basically, luck is assumed when a person expects to have no control over the outcome in the task. Success attributed to luck is not expected to increase future achievement behaviour much, nor would failure attributed to bad luck be expected to decrease it much.

      Research on the attributions people make in achievement-related situations suggests that the four causal ascriptions mentioned above and perhaps other ascriptions as well can best be understood as falling along three dimensions: locus, stability, and controllability. Locus refers to the location, internal or external, of the perceived cause of a success or failure. Ability and effort, for example, are seen as internal dispositions of a person, while task difficulty and luck are situational factors external to the person. Stability refers to how much a given reason for success or failure could be expected to change. Ability and task difficulty are stable and therefore not expected to change much, while effort and luck are unstable and could therefore change dramatically over time. Controllability refers to how much control the individual has over the events of the situation. Causes such as effort are considered to be controllable, whereas luck is uncontrollable.

      One of the most popular cognitive approaches to the study of motivation has been the theory of cognitive dissonance, first systematically studied by the American psychologist Leon Festinger. This theory proposed that people attempt to maintain consistency among their beliefs, attitudes, and behaviours. According to this theory, a motivational state termed cognitive dissonance is produced whenever beliefs, attitudes, and behaviours are inconsistent. Cognitive dissonance is considered to be an aversive state that triggers mechanisms to bring cognitions back into a consistent relationship with one another. Much of the research on cognitive dissonance has centred around what happens when attitudes and behaviours are inconsistent. This research suggests that behavior inconsistent with one's beliefs—if there is insufficient justification for the behaviour—will often bring about modification of those beliefs. Suppose, for example, that a person is required to undergo a stressful initiation in order to join a select group. After undergoing this initiation the person discovers that becoming a member of the group does not provide the satisfaction originally expected. Such an outcome should produce cognitive dissonance because the behaviours required and the current belief about the group are inconsistent. As a result, the theory suggests that motivation will be triggered to bring the dissonant elements back into a consistent relationship. The behaviour cannot be changed because it has already occurred; the belief, on the other hand can be changed. Under these conditions dissonance theory predicts that the person's attitude will change and that he will actually come to believe that he likes the group more. Several studies have supported this prediction.

Self-perception theory
      Cognitive dissonance approaches have not gone unchallenged. An alternative approach, known as self-perception theory, suggests that all individuals analyze their own behaviour much as an outside observer might and, as a result of these observations, make judgments about why they are motivated to do what they do. Thus, in the example above, self-perception theory would argue that the person, in observing his own behaviour, assesses the effort involved and decides that the initiation was endured because he really wanted to be a member of this group. Dissonance theory and self-perception theory are not necessarily mutually exclusive; several studies suggest that both processes can and do occur but under different conditions.

Self-actualization
      Cognitive motivational approaches have also explored the idea that human motivation is heavily influenced by a need for competence or control. Although there are several varieties of these theories, most have in common the idea that human behaviour is at least partially motivated by a need to become as much as one can possibly become. One example of this approach is the self-actualization theory of Abraham Maslow (Maslow, Abraham H.) previously mentioned.

      Maslow has proposed that human motivation can be understood as resulting from a hierarchy of needs. These needs, starting with the most basic physiological demands, progress upward through safety needs, belonging needs, and esteem needs and culminate in self-actualization. Each level directs behaviour toward the need level that is not being adequately met. As lower-level needs are met, the motivation to meet the higher-level needs becomes active. Furthermore, as an individual progresses upward, it becomes progressively more difficult to successfully fulfill the needs of each higher level. For this reason Maslow believed that very few people actually reach the level of self-actualization, and it is a lifelong process for the few who do.

      Based on his observations of individuals he believed to be self-actualized, including historical figures such as the U.S. presidents Abraham Lincoln and Thomas Jefferson, Maslow outlined a cluster of 14 characteristics that distinguish self-actualized individuals. Summarized, these characteristics define individuals who are accepting of themselves and others, are relatively independent of the culture or society in which they live, are somewhat detached but with very close personal ties to a few other people, and are deeply committed to solving problems that they deem important. Additionally, self-actualized individuals intensely appreciate simple or natural events, such as a sunrise, and they sometimes experience profound changes that Maslow termed peak experiences. Although difficult to describe, peak experiences often involve a momentary loss of self and feelings of transcendence. Reports of peak experiences also include the feeling of limitless horizons opening up and of being simultaneously very powerful, yet weak. Peak experiences are extremely positive in nature and often cause an individual to change the direction of his or her future behaviour. Maslow believed that everyone is capable of having peak experiences, but he believed that self-actualized persons have these experiences more often.

Herbert L. Petri

Applications in society
      Attempts have been made in society to use motivational methods to achieve certain goals. In the control of animal behaviour, for example, it is clear that depriving an organism of food is a powerful means for accomplishing reinforcement. Appropriate use of food under these circumstances is an effective procedure for shaping an animal's behaviour, maintaining it, and controlling the rate of its occurrence. Likewise, it is clear that animals have preferences (within, for example, the range of foodstuffs) and that their behaviour can be controlled with relatively greater effectiveness by the proper selection of preferred substances for use in training.

      In many cultures, deprivation cannot be used so readily with human beings as it can be with other animals, although there are many human examples. Thus, some success has been reported in effecting desired behaviour in the classroom by depriving children of some of their recess time when they behave in ways deemed undesirable by the school authorities. Economies based on the use of tokens (e.g., poker chips) have been set up in schools, psychiatric hospitals, and institutions for retarded people. The result typically has been an improvement in the subjects' behaviour and personal care and in the ease with which they may be managed. In such economies, tokens can be exchanged for privileges and commodities (e.g., candy and toys). The individual's ability to obtain tokens is made contingent on socially desirable acts, such as making beds, being personally clean, being cooperative, and being generally acceptable to others. There have been reports of marked improvement in scholastic achievement among institutionalized juvenile delinquents who have been placed in such token economies.

      The effectiveness of these and similar procedures has been most easily demonstrated in institutions, in which the situation permits a great deal of control over the subjects' conditions of life and over their activities. In society at large, of course, this degree of control is effectively not feasible. There also are widely endorsed moral or ethical concerns about the desirability of instituting such control even if it were possible. The use of particular kinds of motivational devices in the control of human behaviour seems to many to be incompatible with the ethical idea of personal freedom and fraught with potential for immoral misuse in the hands of those who seek to manipulate others for ends that are politically or socially conformist.

      On the other hand, it often is observed that many of society's problems are motivational. This observation usually means that the goals and values of economically affluent groups in the Americas, Europe, and Asia are not shared by members of deprived urban populations or by millions of poor people in industrially less-developed countries. Or, it may mean that the goals of those who own or control profit-seeking enterprises (to make a product or deliver a service for the investors' profit) are not shared by workers below the level of middle management. Many techniques have been tried in business and industry to effect so-called motivational involvement with production on the part of ordinary employees. Some of them have had success. Incentive systems, employee participation in company planning and decisions, and human-relations training exemplify the procedures used. A substantial corps of specialists throughout the world provides programs to industry designed to improve the motivation, morale, and satisfaction of workers at all levels. Although these programs have wide acceptance, most of them have received very little objective evaluation.

Charles N. Cofer

Summary
      Motivation is a complex topic that spans virtually all areas of psychology. No one theory is capable of explaining all that we know about motivational processes. Some motives such as hunger, thirst, and sexual activity seem best understood from a biological viewpoint. Other motives appear to be learned, and such motives help to account for the diversity and complexity of human activities. Still other motives are influenced by the cognitive processes in which we engage. Our interpretation of the events around us influences our future motivation.

      A complicating factor in human motivation is the fact that even basic motives are influenced by a variety of elements. For example, we may eat because of energy needs, but some people also eat when stressed or anxious, when depressed or alone, or because of social influences such as other people eating. The taste qualities of certain foods may also cause us to eat when not hungry. This interaction of many factors in determining the motivation of behaviour seriously hinders our ability to understand even basic motivational processes; the contribution of various motivational components must be carefully separated and analyzed. When the study of more subtle motives is attempted, these complicating factors hinder understanding even more. In spite of the large amount of information we have on motivation, much yet remains to be understood.

Herbert L. Petri

Additional Reading
The following works are broad studies in psychology, and they, if not cover, then at least touch upon many aspects of the subject of motivation. Charles N. Cofer, Motivation & Emotion (1972), is a concise discussion of the basic relevant psychological concepts. Good overviews of the major approaches to motivation are presented in Herbert L. Petri, Motivation: Theory, Research, and Applications, 3rd ed. (1991); and David C. McClelland, Human Motivation (1985). Niko Tinbergen, The Study of Instinct (1951, reissued with a new preface by the author, 1989), offers an excellent survey of early research using the ethological approach. Development of the ethological school in the behavioral sciences is exemplified in Konrad Lorenz and Paul Leyhausen, Motivation of Human and Animal Behavior (1973; originally published in German, 1968). Irenäus Eibl-Eibesfeldt, Love and Hate; On the Natural History of Basic Behaviour Patterns (1971; originally published in German, 1970), examines the role of instinctive behaviour in human motivation. Charles N. Cofer and M.H. Appley, Motivation: Theory and Research (1964), is a monumental survey, which for years was considered a standard in the field. Another broad survey of developments in the period until the mid-1960s, though not as extensive, is M.D. Vernon, Human Motivation (1969). Clark L. Hull, Principles of Behavior: An Introduction to Behavior Theory (1943, reissued 1966), includes a discussion of the learning approach, excluded from Vernon's book. Robert C. Bolles, Theory of Motivation, 2nd ed. (1975), provides a review of the drive concept and its failure to explain all aspects of motivated behaviour. John Jung, Understanding Human Motivation: A Cognitive Approach (1978), covers also all traditional motivational approaches. Hans Selye, The Physiology and Pathology of Exposure to Stress: A Treatise Based on the Concepts of the General-Adaptation-Syndrome and the Diseases of Adaptation (1950), and The Stress of Life, rev. ed. (1976, reissued 1984), provide a good introduction to the understanding of the concept of stress and the body's reaction to it. John W. Atkinson and David Birch, An Introduction to Motivation, 2nd ed. (1978), examines the expectancy-value model of achievement motivation and the relevant research. Abraham H. Maslow (ed.), New Knowledge in Human Values (1959, reissued 1970), and the two books authored by Maslow, Eupsychian Management: A Journal (1965), and The Farther Reaches of Human Nature (1971), outline his ideas concerning self-actualization. Nathan Brody, Human Motivation: Commentary on Goal-Directed Action (1983), provides an overview of all mainstream scientific theories of motivation beginning with Hull. Edward L. Deci and Richard M. Ryan, Intrinsic Motivation and Self-Determination in Human Behavior (1985), offers a comprehensive look at the literature of motivation from Freud to the latest working theories.Herbert L. Petri

* * *


Universalium. 2010.

Look at other dictionaries:

  • Motivation — Motivation …   Deutsch Wörterbuch

  • MOTIVATION — Connotant aussi bien de purs besoins physiologiques que des aspirations artistiques, religieuses ou scientifiques, le terme de motivation suscite à bon droit la méfiance: ne s’agirait il pas encore ici de quelque vague notion métaphysique,… …   Encyclopédie Universelle

  • motivation — mo‧ti‧va‧tion [ˌməʊtˈveɪʆn ǁ ˌmoʊ ] noun HUMAN RESOURCES 1. [uncountable] eagerness and willingness to do something without needing to be told or forced to do it: • Some of the workers seem to lack motivation. 2. [countable] the reason why you… …   Financial and business terms

  • Motivation EP — EP Sum 41 Дата выпуска 12 марта, 2002 Записан 2001 Жанр …   Википедия

  • Motivation EP — EP by Sum 41 Released March 12, 2002 Recorded 2001 …   Wikipedia

  • Motivation — Saltar a navegación, búsqueda Motivation Álbum de Moti Special Publicación 1985 Grabación Data Alpha, Rainbow Weryton (Múnich) …   Wikipedia Español

  • motivation — n. 1. The act or process of motivating. [PJC] 2. The mental process that arouses an organism to action; as, a large part of a teacher s job is to give students the motivation to learn on their own. Syn: motive, need. [WordNet 1.5 +PJC] 3. The… …   The Collaborative International Dictionary of English

  • Motivation — Motivation: «Motivation»  песня Sum 41 «Motivation»  песня Келли Роуленд при участии Лил Уэйна …   Википедия

  • motivation — index catalyst, cause (reason), determinant, end (intent), impulse, incentive, instigation …   Law dictionary

  • Motivation — ⇒ Handlungsbereitschaft …   Deutsch wörterbuch der biologie

  • motivation — (n.) 1873, from MOTIVATE (Cf. motivate) + ION (Cf. ion). Psychological use, inner or social stimulus for an action, is from 1904 …   Etymology dictionary


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.