hyperboloid

hyperboloid
hyperboloidal, adj.
/huy perr"beuh loyd'/, n. Math.
a quadric surface having a finite center and some of its plane sections hyperbolas. Equation: x2/a2 + y2/b2 - z2/c2 = 1.
[1720-30; HYPERBOL(A) + -OID]

* * *

      the open surface generated by revolving a hyperbola (q.v.) about either of its axes. If the tranverse axis of the surface lies along the x axis and its centre lies at the origin and if a, b, and c are the principal semi-axes, then the general equation of the surface is expressed as x2/a2 ± y2/b2 - z2/c2 = 1.

 Revolution of the hyperbola about its conjugate axis generates a surface of one sheet, an hourglass-like shape (see Figure—>, left), for which the second term of the above equation is positive. The intersections of the surface with planes parallel to the xz and yz planes are hyperbolas. Intersections with planes parallel to the xy plane are circles or ellipses.

 Revolution of the hyperbola about its transverse axis generates a surface of two sheets, two separate surfaces (see Figure—>, right), for which the second term of the general equation is negative. Intersections of the surface(s) with planes parallel to the xy and xz planes produce hyperbolas. Cutting planes parallel to the yz plane and at a distance greater than the absolute value of a,|a|, from the origin produce circles or ellipses of intersection, respectively, as a equals b or a is not equal to b.
 

* * *


Universalium. 2010.

См. также в других словарях:

  • Hyperboloīd — (griech.), Fläche zweiter Ordnung wie das Ellipsoid (s. d.). Fig. 1. Zweischaliges Hyperboloid. Am einfachsten ist das Rotationshyperboloid, das man erhält, wenn man sich eine Hyperbel (s. d.) um eine ihrer Achsen gedreht denkt; je nachdem man… …   Meyers Großes Konversations-Lexikon

  • Hyperboloid — Hy*per bo*loid, n. [Hyperbola + oid: cf. F. hyperbolo[ i]de.] (Geom.) A surface of the second order, which is cut by certain planes in hyperbolas; also, the solid, bounded in part by such a surface. [1913 Webster] {Hyperboloid of revolution}, an… …   The Collaborative International Dictionary of English

  • Hyperboloid — Hy*per bo*loid, a. (Geom.) Having some property that belongs to an hyperboloid or hyperbola. [1913 Webster] …   The Collaborative International Dictionary of English

  • Hyperboloid — (Math.), ist eine Fläche zweiten Grades, deren ebene Schnitte unter gewissen Bedingungen Hyperbeln sind. Es gibt Hyperbolische H e, deren allgemeine Gleichung zwischen rechtwinkligen Coordinaten ist z2/c2 + y2/b2 – x2/a2 = 1, auch H. mit einer… …   Pierer's Universal-Lexikon

  • Hyperboloid — Hyperboloid, s. Flächen zweiten Grades …   Lexikon der gesamten Technik

  • Hyperboloid — Hyperboloīd, eine Fläche zweiter Ordnung, die durch Ebenen in Hyperbeln, Ellipsen und Parabeln geschnitten werden kann. Man unterscheidet das einschalige [Abb. 841 a] und das zweischalige H. [b] …   Kleines Konversations-Lexikon

  • hyperboloid — [hī pʉr′bə loid΄] n. Geom. 1. a solid often formed by rotating a hyperbola around either main axis: its plane sections are hyperbolas, ellipses, or circles 2. the surface of such a solid …   English World dictionary

  • Hyperboloid — Not to be confused with Hyperbolic paraboloid. Hyperboloid of one sheet …   Wikipedia

  • Hyperboloid — Ein Hyperboloid ist eine Fläche zweiter Ordnung, die durch Ebenen in Hyperbeln, Ellipsen, Parabeln geschnitten werden kann. Es wird zwischen ein und zweischaligen Hyperboloiden unterschieden, ihr gemeinsamer Grenzfall ist der Doppelkegel.… …   Deutsch Wikipedia

  • Hyperboloid — Hy|per|bo|lo|id 〈n. 11〉 Fläche, die durch Drehung einer Hyperbel um eine ihrer Symmetrieachsen entsteht [<Hyperbel + grch. eidos „Aussehen“] * * * Hy|per|bo|lo|id, das; [e]s, e [zu ↑ Hyperbel u. griech. oeide̅̓s = ähnlich] (Math.): Körper, der …   Universal-Lexikon

  • Hyperboloid — hiperboloidas statusas T sritis fizika atitikmenys: angl. hyperboloid vok. Hyperboloid, m rus. гиперболоид, m pranc. hyperboloïde, m …   Fizikos terminų žodynas


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»