ether


ether
etheric /i ther"ik, i thear"-/, adj.
/ee"theuhr/, n.
1. Also called diethyl ether, diethyl oxide, ethyl ether, ethyl oxide, sulfuric ether. Chem., Pharm. a colorless, highly volatile, flammable liquid, C4H10O, having an aromatic odor and sweet, burning taste, derived from ethyl alcohol by the action of sulfuric acid: used as a solvent and, formerly, as an inhalant anesthetic.
2. Chem. (formerly) one of a class of compounds in which two organic groups are attached directly to an oxygen atom, having the general formula ROR.
3. the upper regions of space; the clear sky; the heavens.
4. the medium supposed by the ancients to fill the upper regions of space.
5. Physics. a hypothetical substance supposed to occupy all space, postulated to account for the propagation of electromagnetic radiation through space. Cf. Michelson-Morley experiment.
Also, aether (for defs. 3-5).
[1350-1400; ME < L aether the upper air, pure air, ether < Gk aithér, akin to aíthein to glow, burn, OE ad funeral pyre, L aestus heat]

* * *

Any of a class of organic compounds whose molecular structure has an oxygen atom interposed between two carbon atoms that are part of hydrocarbon molecules.

Ethers have the general chemical formula ROR′, in which R and R′ represent the hydrocarbons. They resemble alcohols but generally are less dense, less soluble in water, more volatile, and more inert. They are used in chemical processing, for extraction and separation of chemicals, and as solvents. Some are used as insecticides and soil fumigants. They are also used in medicine and pharmacology. Codeine is the methyl ether of morphine. The term ether often refers to ethyl ether (C2H5OC2H5), best known as an anesthetic but also used as a solvent, an extractant, and a reaction medium.

* * *

Introduction

      any of a class of organic compounds (organic compound) characterized by an oxygen atom bonded to two alkyl or aryl groups. Ethers are similar in structure to alcohols (alcohol), and both ethers and alcohols are similar in structure to water. In an alcohol one hydrogen atom of a water molecule is replaced by an alkyl group, whereas in an ether both hydrogen atoms are replaced by alkyl or aryl groups.

      At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points (boiling point). They are relatively unreactive, and as a result they are useful as solvents for fats (fat), oils, waxes (wax), perfumes (perfume), resins (resin), dyes (dye), gums (gum), and hydrocarbons. Vapours of certain ethers are used as insecticides (insecticide), miticides (miticide), and fumigants (fumigant) for soil.

      Ethers are also important in medicine and pharmacology, especially for use as anesthetics (anesthetic). For example, ethyl ether (CH3CH2−O−CH2CH3), simply known as ether, was first used as a surgical anesthetic in 1842. codeine, a potent pain-relieving drug, is the methyl ether of morphine. Because ether is highly flammable, it has largely been replaced by less-flammable anesthetics, including nitrous oxide (N2O) and halothane (CF3−CHClBr).

      Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines (diesel engine) and gasoline engines (gasoline engine) in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.

nomenclature of ethers
      Common names of ethers simply give the names of the two alkyl groups bonded to oxygen and add the word ether. The current practice is to list the alkyl groups in alphabetical order (t-butyl methyl ether), but older names often list the alkyl groups in increasing order of size (methyl t-butyl ether). If just one alkyl group is described in the name, it implies two identical groups, as in ethyl ether for diethyl ether.

      Systematic (IUPAC) names for ethers use the more complex group as the root name, with the oxygen atom and the smaller group named as an alkoxy substituent. Examples given above are ethoxyethane (diethyl ether), methoxyethane (methyl ethyl ether), 2-methoxy-2-methylpropane (MTBE), and phenoxybenzene (diphenyl ether). The IUPAC nomenclature works well for compounds with additional functional groups (functional group), because the other functional groups can be described in the root name.

Physical properties of ethers
      Ethers lack the hydroxyl groups of alcohols (alcohol). Without the strongly polarized O−H bond, ether molecules (molecule) cannot engage in hydrogen bonding with each other. Ethers do have nonbonding electron pairs on their oxygen atoms, however, and they can form hydrogen bonds with other molecules (alcohols, amines (amine), etc.) that have O−H or N−H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds (inorganic compound). (For more information about hydrogen bonding, see chemical bonding: Intermolecular forces (chemical bonding).)

 Because ether molecules cannot engage in hydrogen bonding with each other, they have much lower boiling points (boiling point) than do alcohols with similar molecular weights. For example, the boiling point of diethyl ether (C4H10O, molecular weight [MW] 74) is 35 °C (95 °F), but the boiling point of 1-butanol (or n- butyl alcohol; C4H10O, MW 74) is 118 °C (244 °F). In fact, the boiling points of ethers are much closer to those of alkanes (paraffin hydrocarbon) with similar molecular weights; the boiling point of pentane (C5H12, MW 72) is 36 °C (97 °F), close to the boiling point of diethyl ether.

Complexes of ethers with reagents
      The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents (Grignard reagent) cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.

      Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF). Similarly, gaseous boron trifluoride (BF3) is more easily used as its liquid complex with diethyl ether, called BF3 etherate, rather than as the toxic, corrosive gas.

      Crown ethers are specialized cyclic polyethers that surround specific metal ions to form crown-shaped cyclic complexes. They are named by using the parent name crown preceded by a number describing the size of the ring and followed by the number of oxygen atoms in the ring. In the crown-ether complex, the metal ion fits into the cavity of the crown ether and is solvated by the oxygen atoms. The exterior of the complex is nonpolar, masked by the alkyl groups of the crown ether. Many inorganic salts can be made soluble in nonpolar organic solvents by complexing them with an appropriate crown ether. potassium ions (K+) are complexed by 18-crown-6 (an 18-membered ring with 6 oxygen atoms), sodium ions (Na+) by 15-crown-5 (15-membered ring, 5 oxygens), and lithium ions (Li+) by 12-crown-4 (12-membered ring, 4 oxygens).

      In each of these crown-ether complexes, only the cation is solvated by the crown ether. In a nonpolar solvent, the anion is not solvated but is dragged into solution by the cation. These “bare” anions in nonpolar solvents can be much more reactive than they are in polar solvents that solvate and shield the anion. For example, the 18-crown-6 complex of potassium permanganate, KMnO4, dissolves in benzene to give “purple benzene,” with a bare MnO4 ion acting as a powerful oxidizing agent. Similarly, the bare OH ion in sodium hydroxide (NaOH), made soluble in hexane (C6H14) by 15-crown-5, is a more powerful base and nucleophile than it is when solvated by polar solvents such as water or an alcohol.

Synthesis of ethers

Williamson ether synthesis
      The most versatile method for making ethers is the Williamson ether synthesis, named for English chemist Alexander Williamson (Williamson, Alexander William), who devised the method in the 19th century. It uses an alkoxide ion to attack an alkyl halide, substituting the alkoxy (−O−R) group for the halide. The alkyl halide must be unhindered (usually primary), or elimination will compete with the desired substitution.

Bimolecular dehydration
      In the presence of acid, two molecules of an alcohol may lose water to form an ether. In practice, however, this bimolecular dehydration to form an ether competes with unimolecular dehydration to give an alkene (olefin). Bimolecular dehydration produces useful yields of ethers only with simple, primary alkyl groups such as those in dimethyl ether and diethyl ether (ethyl ether). Dehydration is used commercially to produce diethyl ether.

Reactions of ethers

Cleavage
      Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.

Autoxidation
      Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides (peroxide). If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.

Leroy G. Wade, Jr.

Additional Reading
An essential resource for understanding the reactions of organic compounds, including ethers, is Michael Smith and Jerry March, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed. (2007). Carl R. Noller, Chemistry of Organic Compounds, 3rd ed. (1965), is a classic textbook using an older style of teaching organic chemistry, with heavy emphasis on history, industrial chemistry, and nomenclature. Specific information about ethers can be found in Saul Patai (ed.), The Chemistry of the Ether Linkage (1967), The Chemistry of the Hydroxyl Group, 2 vol. (1971), and The Chemistry of Ethers, Crown Ethers, Hydroxyl Groups, and Their Sulphur Analogues, 2 vol. (1980).Leroy G. Wade, Jr.

▪ theoretical substance
also spelled  aether,  also called  luminiferous ether,  

      in physics, a theoretical, universal substance believed during the 19th century to act as the medium for transmission of electromagnetic waves (electromagnetic radiation) (e.g., light and X rays) much as sound waves are transmitted by elastic media such as air. The ether was assumed to be weightless, transparent, frictionless, undetectable chemically or physically, and literally permeating all matter and space. The theory met with increasing difficulties as the nature of light and the structure of matter became better understood; it was seriously weakened (1881) by the Michelson-Morley experiment (q.v.), which was designed specifically to detect the motion of the Earth through the ether and which showed that there was no such effect.

      With the formulation of the special theory of relativity by Albert Einstein in 1905 and its acceptance by scientists generally, the ether hypothesis was abandoned as being unnecessary in terms of Einstein's assumption that the speed of light, or any electromagnetic wave, is a universal constant.

* * *


Universalium. 2010.

Look at other dictionaries:

  • ÉTHER — La notion d’éther est aussi vieille que la physique, mais sa signification a considérablement varié, suivant en cela l’évolution des théories et les progrès de l’expérience. Oscillant entre l’idée de feu, de lumière et celle de représentation… …   Encyclopédie Universelle

  • Ether — E ther ([=e] th[ e]r), n. [L. aether, Gr. a iqh r, fr. a i qein to light up, kindle, burn, blaze; akin to Skr. idh, indh, and prob. to E. idle: cf. F. [ e]ther.] [Written also {[ae]ther}.] 1. (Physics) A medium of great elasticity and extreme… …   The Collaborative International Dictionary of English

  • Ether — Éther Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom …   Wikipédia en Français

  • Ether — [ e:tɐ]: vgl. ↑ Äther. * * * Ether 〈m. 3; unz.; Chem.; fachsprachl.〉 = Äther * * * E|ther [griech. aithe̅̓r = obere Luft, Himmelsluft; vgl. Äther (1)], der; s, ; veraltete S: Äther: 1) Gruppenbez. für org. Verb. der allg. Formel R1 O R2, wobei… …   Universal-Lexikon

  • ether — late 14c., upper regions of space, from O.Fr. ether and directly from L. aether the upper pure, bright air, from Gk. aither upper air; bright, purer air; the sky, from aithein to burn, shine, from PIE root *aidh to burn (see EDIFICE (Cf.… …   Etymology dictionary

  • ether — ► NOUN 1) (also diethyl ether) a volatile, highly flammable liquid used as an anaesthetic and as a solvent. 2) Chemistry any organic compound with an oxygen atom linking two alkyl groups. 3) (also aether) chiefly literary the clear sky; the upper …   English terms dictionary

  • ether — [ē′thər] n. [ME < L aether < Gr aithēr < aithein, to kindle, burn < IE base * aidh > L aestas, summer, OE ætan, to burn] 1. a substance hypothesized by the ancients as filling all space beyond the sphere of the moon, and making up… …   English World dictionary

  • ETHER — civitas in tribu Iudae. Iosuae c. 15. v. 42. Lat. oratio, sive deprecatio …   Hofmann J. Lexicon universale

  • Ether — vgl. ↑Äther …   Das große Fremdwörterbuch

  • ether — atmosphere, *air, ozone …   New Dictionary of Synonyms

  • Ether — vgl. 2Äther …   Die deutsche Rechtschreibung


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.