cable

cable
cablelike, adj.
/kay"beuhl/, n., v., cabled, cabling.
n.
1. a heavy, strong rope.
2. a very strong rope made of strands of metal wire, as used to support cable cars or suspension bridges.
3. a cord of metal wire used to operate or pull a mechanism.
4. Naut.
a. a thick hawser made of rope, strands of metal wire, or chain.
b. See cable's length.
5. Elect. an insulated electrical conductor, often in strands, or a combination of electrical conductors insulated from one another.
6. cablegram.
8. cable-stitch.
9. Archit. one of a number of reedings set into the flutes of a column or pilaster.
v.t.
10. to send (a message) by cable.
11. to send a cablegram to.
12. to fasten with a cable.
13. to furnish with a cable.
14. to join (cities, parts of a country, etc.) by means of a cable television network: The state will be completely cabled in a few years.
v.i.
15. to send a message by cable.
16. to cable-stitch.
[1175-1225; ME, prob. < ONF *cable < LL capulum lasso; cf. L capulare to rope, halter (cattle), akin to capere to take]

* * *

(as used in expressions)

* * *

Introduction

      in electrical and electronic systems, a conductor or group of conductors for transmitting electric power or telecommunication signals from one place to another. Electric communication cables transmit voice messages, computer data, and visual images via electrical signals to telephones, wired radios, computers, teleprinters, facsimile machines, and televisions. There is no clear distinction between an electric wire and an electric cable. Usually the former refers to a single, solid metallic conductor, with or without insulation, while the latter refers to a stranded conductor or to an assembly of insulated conductors. With fibre-optic cables, made of flexible fibres of glass and plastic, electrical signals are converted to light pulses for the transmission of audio, video, and computer data.

Electric power cables
      The most common type of electric power cable is that which is suspended overhead between poles or steel towers. These aerial cables consist of a number of wires, usually of copper or aluminum, twisted (stranded) together in concentric layers. Copper or aluminum is chosen for high electrical conductivity, while stranding gives the cable flexibility. Because aerial cables are frequently subjected to severe environmental stresses, alloys of copper or aluminum are sometimes used to increase the mechanical strength of the cable, although at some detriment to its electrical conductivity. A more common design is to include in the stranded cable assembly a number of high-strength, noncorrosive steel wires. Many aerial cables, especially those operating at high voltages, are bare (uninsulated). Cables operating at lower voltages frequently have coverings of asphalt-saturated cotton braid, polyethylene, or other dielectric (nonconducting) material. These coverings offer some protection against short-circuiting and accidental electric shock.

      Another type of electric power cable is installed in underground ducts and is extensively used in cities where lack of space or considerations of safety preclude the use of overhead lines. Unlike an aerial cable, a buried cable invariably uses commercially pure copper or aluminum (mechanical strength is not a problem underground), and the stranded conductor is frequently rolled to maximize its compactness and electrical conductance.

      Aerial and underground power cables compose a major portion of the electrical circuit from the generator to the point of utilization of the electric power. The balance of the circuit (and sometimes the entire circuit) may, however, require specialized cables. Illustrative of these usages and of the special conditions to be met are cables for use in steel mills and boiler rooms (high temperature), on mobile equipment (vibration and excessive flexing), in chemical plants (corrosion), for submarines and mines (mechanical abuse), near nuclear reactors (high radiation), and on artificial satellites (pressure extremes).

Electric telecommunication cables
      Electric cables used to transmit information are quite different from power cables, both in function and in design. Power cables are designed for high voltages and high current loads, whereas both voltage and current in a communication cable are small. Power cables operate on direct current or low-frequency alternating current, while communication cables operate at higher frequencies. A power cable usually has not more than three conductors, each of which may be 1 inch (2.5 cm) or more in diameter; a telephone cable may have several thousand conductors, the diameter of each being less than 0.05 inch (0.125 cm).

 Protective coverings for electric communication cables are similar to those for electric power cables. They usually consist of an aluminum or lead-alloy tube or of a combination of metallic strips and thermoplastic materials. The insulation of a telephone cable is composed of dry cellulose (in the form of paper tape wrapped around the conductor or paper pulp applied to the conductor) or of polyethylene. The insulation thickness is a few hundredths of an inch or less. A coaxial cable, which first gained widespread use during World War II, is a two-conductor cable in which one of the conductors takes the form of a tube while the other (smaller but also circular in cross section) is supported, with a minimum of solid insulation, at the centre of the tube. Several of these coaxial units may be assembled within a common jacket, or sheath.

      The construction of long submarine cables for either telephone or telegraph service is somewhat different from that discussed previously. A transatlantic cable for telegraphs was first completed in 1858 and for telephones in 1956; a fibre-optic cable first spanned the Atlantic Ocean in 1988. See also undersea cable.

Fibre-optic telecommunication cables
      Cables made of optical fibres first came into operation in the mid-1970s. In a fibre-optic cable, light signals are transmitted through thin fibres of plastic or glass from light-emitting diodes or semiconductor lasers by means of internal reflection. The advantages of fibre-optic cables over conventional coaxial cables include low material cost, high transmission capacity, low signal attenuation, data security, chemical stability, and immunity from electromagnetic interference.

      Like other types of cables, fibre-optic cables are designed and insulated for various applications overland, underground, overhead, and underwater. Such cables usually consist of a core embedded in a series of protective layers. The cable core contains a single solid or stranded central strength element that is surrounded by optical fibres; these are either arranged loosely in a rigid core tube or packed tightly into a cushioned, flexible outer jacket.

      The number and type of protective layers surrounding the core depends upon the use for which the cable is intended. In general, the core is covered with a layer of copper to improve conduction over long distances, followed by a material (e.g., aluminum foil) to block the passage of water into the fibres. Steel wire or strands are added for tensile strength, and the entire cable is then wrapped in a polyethylene sheath, or jacket, for stability. See also fibre optics.

      in engineering, either an assemblage of three or more ropes twisted together for extra strength or a rope made by twisting together several strands of metal wire. This article deals with wire rope. For rope made from synthetic or natural organic fibres, see rope.

      The first successful stranded iron wire rope was developed in 1831–34 by Wilhelm Albert, a mining official of Clausthal in the Harz Mountains in Saxony. Even when first tried for hauling and hoisting in his mine, it proved so superior to hemp rope in serviceability and cost that its use soon became widespread in European mining. This stranded wire rope consisted of individual wires twisted about a hemp rope core to form the strand, six such strands then being twisted about a larger hemp rope core in reverse direction to form the rope. Prior to this, wire rope had already been made in the form of a selvage cable—a bundle of individual wires stretched out into a long length and arranged parallel to one another, then bound together and covered with tarred hemp yarns. High-tensile steel wire was introduced during the 1880s, and steel is now the predominant metal used for wire rope.

      The manufacture of wire rope is similar to making rope from natural yarns or synthetic filaments. The individual wires are first twisted into strands; six strands (usually), twisted about a core rope, are then laid into the rope. The cores are cord or rope structures made of steel wires; sisal, manila, henequen, jute, or hemp fibres; or polypropylene monofilaments. The function of the core is to provide a firm cushion for positioning the wires in the strands, to maintain a firm rope structure, and to provide some internal lubrication when bending stresses are involved.

      Most wire ropes are used in hoisting and hauling operations and in machinery for these purposes, such as cranes, power shovels, elevators, mine hoists, and so on. A flexible rope structure to cope with fast movement and bending stresses is required for most such uses. In other uses, such as support guys and stays, this property is not so much a consideration. Selvage cables composed of parallel wires are ideally suited for the main cables of a suspension bridge (q.v.). Marine ropes are used for rigging, mooring, and towing.

* * *


Universalium. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • câble — câble …   Dictionnaire des rimes

  • câblé — câblé …   Dictionnaire des rimes

  • câble — [ kabl ] n. m. • fin XIIe chable, cable; bas lat. capulum ; écrit câble par infl. de l a. fr. chaable « catapulte » I ♦ 1 ♦ Faisceau de fils (textiles, métalliques, etc.) tressés. ⇒ corde. Torons formant un câble. Câble de levage. Câble pour… …   Encyclopédie Universelle

  • câblé — câble [ kabl ] n. m. • fin XIIe chable, cable; bas lat. capulum ; écrit câble par infl. de l a. fr. chaable « catapulte » I ♦ 1 ♦ Faisceau de fils (textiles, métalliques, etc.) tressés. ⇒ corde. Torons formant un câble. Câble de levage. Câble… …   Encyclopédie Universelle

  • Cable — Ca ble (k[=a] b l), n. [F. c[^a]ble, LL. capulum, caplum, a rope, fr. L. capere to take; cf. D., Dan., & G. kabel, from the French. See {Capable}.] 1. A large, strong rope or chain, of considerable length, used to retain a vessel at anchor, and… …   The Collaborative International Dictionary of English

  • Cable — Saltar a navegación, búsqueda Para otros usos de este término, véase Cable (desambiguación). Se llama cable a un conductor o conjunto de ellos generalmente recubierto de un material aislante o protector. Contenido 1 Conductores eléctricos 2… …   Wikipedia Español

  • cable — sustantivo masculino 1. Cuerda gruesa capaz de soportar grandes tensiones: cable de un ascensor, cable de un teleférico. 2. Hilo metálico conductor de electricidad envuelto por una cubierta aislante: cable eléctrico, cable aéreo, cable submarino …   Diccionario Salamanca de la Lengua Española

  • Cable — steht für: den US amerikanischen Schriftsteller George Washington Cable Vince Cable (* 1943), britischer Politiker eine aus England stammende Rockband, siehe Cable (Band) einen Charakter aus der Comicreihe X Men Orte in den Vereinigten Staaten:… …   Deutsch Wikipedia

  • cable — (De or. inc.); quizá del b. lat. capŭlum, cuerda). 1. m. Maroma gruesa. 2. cablegrama. 3. cable eléctrico. 4. cable de alambre. 5. Ayuda que se presta a quien está en una situación comprometida. Echar, lanzar, tender, tirar un cable …   Diccionario de la lengua española

  • câblé — câblé, ée 1. (kâ blé, blée) part. passé. 1°   Terme de blason. Croix câblée, croix formée ou couverte de cordes ou de câbles. 2°   Muni d un câble. Ancre câblée. 3°   Terme d architecture. Se dit d une moulure sculptée de manière à présenter l… …   Dictionnaire de la Langue Française d'Émile Littré

  • cable — cable, cruzársele a alguien los cables expr. enfadarse, perder los estribos. ❙ «Parece que a Ventura se le cruzaron los cables por algo y...» Juan Madrid, Cuentas pendientes. ❙ «...la derecha tradicional, la española entre otras, anda con los… …   Diccionario del Argot "El Sohez"

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”