algebraically closed field
a field in which every polynomial equation with coefficients that are elements of the field has at least one root in the field, as the field of complex numbers.

* * *


Universalium. 2010.

Look at other dictionaries:

  • Algebraically closed field — In mathematics, a field F is said to be algebraically closed if every polynomial in one variable of degree at least 1, with coefficients in F , has a root in F . ExamplesAs an example, the field of real numbers is not algebraically closed,… …   Wikipedia

  • algebraically closed field — Math. a field in which every polynomial equation with coefficients that are elements of the field has at least one root in the field, as the field of complex numbers …   Useful english dictionary

  • Quasi-algebraically closed field — In mathematics, a field F is called quasi algebraically closed (or C1) if for every non constant homogeneous polynomial P over F has a non trivial zero provided the number of its variables is more than its degree. In other words, if P is a non… …   Wikipedia

  • Pseudo algebraically closed field — In mathematics, a field K is pseudo algebraically closed (usually abbreviated by PAC) if one of the following equivalent conditions holds:*Each absolutely irreducible variety V defined over K has a K rational point. *Each absolutely irreducible… …   Wikipedia

  • algebraically closed — adjective Containing all roots of single variable polynomials in its elements. According to the fundamental theorem of algebra, the field of complex numbers is algebraically closed …   Wiktionary

  • Real closed field — In mathematics, a real closed field is a field F in which any of the following equivalent conditions are true:#There is a total order on F making it an ordered field such that, in this ordering, every positive element of F is a square in F and… …   Wikipedia

  • Differentially closed field — In mathematics, a differential field K is differentially closed if every finite system of differential equations with a solution in some differential field extending K already has a solution in K. This concept was introduced by Robinson (1959).… …   Wikipedia

  • Field arithmetic — In mathematics, field arithmetic is a subject that studies the interrelations between arithmetic properties of a ql|field (mathematics)|field and its absolute Galois group.It is an interdisciplinary subject as it uses tools from algebraic number… …   Wikipedia

  • Field (mathematics) — This article is about fields in algebra. For fields in geometry, see Vector field. For other uses, see Field (disambiguation). In abstract algebra, a field is a commutative ring whose nonzero elements form a group under multiplication. As such it …   Wikipedia

  • Field of definition — In mathematics, the field of definition of an algebraic variety V is essentially the smallest field to which the coefficients of the polynomials defining V can belong. Given polynomials, with coefficients in a field K , it may not be obvious… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”